MATH 817 ASSIGNMENT 3 SOLUTIONS

(1) Proof by induction. First note that $G=G^{1}, H=H^{1}$ and ϕ is surjective so $\phi\left(G^{1}\right)=$ H^{1}. Suppose $n>1$ and suppose inductively that $\phi\left(G^{n-1}\right)=H^{n-1}$. Then $\phi\left(G^{n}\right)=$ $\phi\left(\left[G^{n-1}, G\right]\right)=\left[\phi\left(G^{n-1}\right), \phi(G)\right]=\left[H^{n-1}, H\right]=H^{n}$.
(2) Since G is finite and nilpotent we have

$$
\begin{equation*}
1=N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{n}=G \tag{1}
\end{equation*}
$$

with $N_{i} \triangleleft G$ and $N_{i+1} / N_{i} \subseteq Z\left(G / N_{i}\right)$. Let N_{i+1} / N_{i} be a non-cyclic factor. Since N_{i+1} / N_{i} is finite abelian we can write $N_{i+1} / N_{i}=\prod_{j=1}^{m_{i}} C_{i, j}$ where $C_{i, j}$ is cyclic. Then selecting just one of the cyclic factors we have

$$
N_{i+1} / N_{i}=C \times H
$$

C and H both nontrivial, C cyclic. By the correspondence theorem define K by $H=K / N_{i}$. Then $N_{i} \subseteq K \subseteq N_{i+1}$. Consider the series

$$
\begin{equation*}
1=N_{0} \subseteq N_{1} \subseteq \cdots N_{i} \subseteq K \subseteq N_{i+1} \subseteq \cdots \subseteq N_{n}=G \tag{2}
\end{equation*}
$$

$K / N_{i}=H \subseteq Z\left(G / N_{i}\right)$ and $N_{i+1} / K \cong\left(N_{i+1} / N_{i}\right) /\left(K / N_{i}\right) \cong C H / H \cong C /(C \cap H)=$ C. So all non-cyclic factors of (2) are central, and the sum of the sizes of all non-cyclic factors is smaller than in (1). Finally since $H=K / N_{i} \subseteq Z\left(G / N_{i}\right)$ we have for any $g \in G$ and $k \in K$ that $k^{-1} g^{-1} k g \in N_{i}$ so $g^{-1} k g \in N_{i} K=K$ so $K \triangleleft G$. Continuing inductively we get that G is supersolvable.
(3) Let G be supersolvable, so we have

$$
1=N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{n}=G
$$

with the $N_{i} \triangleleft G$ and N_{i+1} / N_{i} cyclic. Proceed by induction on n.
Let M be a minimal normal subgroup of G. If $M \subseteq N_{1}=N_{1} / N_{0}$ then M is cyclic.
Suppose $M \nsubseteq N_{1}$. Consider $H=M \cap N_{1}$. Take $g \in G$. Since $M \triangleleft G$, $H^{g} \subseteq M$, and since $N_{1} \triangleleft G, H^{g} \subseteq N_{1}$. Thus $H \triangleleft G$. But M is minimal, so $H=1$.

Let $\pi: G \rightarrow G / N_{1}$ be the canonical homomorphism. G / N_{1} is supersolvable with series

$$
1=N_{1} / N_{1} \subseteq N_{2} / N_{1} \subseteq \cdots \subseteq N_{n} / N_{1}=G / N_{1}
$$

(since $\left.\left(N_{i} / N_{1}\right) /\left(N_{i+1} / N_{1}\right) \cong N_{i} / N_{i+1}\right)$ which has smaller length than the series of G.
$\pi(M)$ is a nontrivial normal subgroup of G / N_{1}. Suppose $K / N_{1} \subsetneq \pi(M)$ were a nontrivial normal subgroup of G / N_{1}. Then by the correspondence theorem $M \triangleleft G$ and so $M \cap K \triangleleft G$. But $\pi(M \cap K)=K / N_{1} \neq 1$ so $M \cap K \neq 1$ contradicting the minimality of M.

Thus $\pi(M)$ is a minimal nontrivial normal subgroup of G / N_{1}, and so by induction $\pi(M)$ is cyclic. But since $M \cap N_{1}=1, \pi$ is an isomorphism on $M \rightarrow \pi(M)$ and so $\pi(M)$ is cyclic.

$$
\begin{align*}
& {\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}} \tag{4}\\
& =\left[x^{-1} y x y^{-1}, z\right]^{y}\left[y^{-1} z y z^{-1}, x\right]^{z}\left[z^{-1} x z x^{-1}, y\right]^{x} \\
& =\left(y x^{-1} y^{-1} x z^{1} x^{-1} y x y^{-1} z\right)^{y}\left(z y^{-1} z^{-1} y x^{-1} y^{-1} z y z^{-1} x\right)^{z}\left(x z^{-1} x^{-1} z y^{-1} z^{-1} x z x^{-1} y\right)^{x} \\
& =y^{-1} y x^{-1} y^{-1} x z^{1} x^{-1} y x y^{-1} z y z^{-1} z y^{-1} z^{-1} y x^{-1} y^{-1} z y z^{-1} x z x^{-1} x z^{-1} x^{-1} z y^{-1} z^{-1} x z x^{-1} y x \\
& =1
\end{align*}
$$

(5) (a) Let $|G|=4$. Either G is cyclic (hence solvable) or $x^{2}=1$ for all $x \in G$, so by a previous homework problem G is abelian, hence solvable.
(b) Let $|G|=p q, p>q$. Then we know G has a normal Sylow- p-subgroup, P. Then

$$
1 \subseteq P \subseteq G
$$

And $|P / 1|=|P|=p$, so $P / 1$ is cyclic since of prime order, and $|G / P|=q$ so G / P is cyclic since of prime order. Thus G is solvable.
(c) Let $|G|=12=3 \cdot 2^{2}$. Then we know that G has a normal Sylow-3-subgroup, or a normal Sylow-2-subgroup. Call this group S. Then G / S has order 3 or 4 and S also has order 3 or 4 . By the first part any group of order 4 is solvable and any group of order 3 is solvable since it is cyclic, hence abelian. Thus (Isaacs Corollary 8.4) G is solvable.
(d) Let $|G|=36$. Let H be a Sylow-3-subgroup. Then $|G: H|=4$. Consider the homomorphism $\phi: G \rightarrow S_{4} \cong \operatorname{Sym}(G / H)$ given by $g \mapsto(H x \mapsto H x g)$. Then $\operatorname{ker}(\phi) \subseteq H$ so $|\operatorname{ker}(\phi)|=1$ or 3 or 9 and $|G| /|\operatorname{ker}(\phi)|$ divides $\left|S_{4}\right|=24=3 \cdot 2^{3}$. So 3 divides $|\operatorname{ker}(\phi)|$. So $\operatorname{ker}(\phi)$ is nontrivial and has order 3 or 9 .
This gives that $G / \operatorname{ker}(\phi)$ has order 4 or 12 and hence is solvable by previous parts. If $\operatorname{ker}(\phi)$ has order 3 it is abelian hence solvable. Finally consider $|\operatorname{ker}(\phi)|=9$. Then $\operatorname{ker}(\phi)$ is a finite p-group and so has a nontrivial center. Thus either it equals its center and so is abelian hence solvable, or its center has order 3 giving a sequence which shows that $\operatorname{ker}(\phi)$ is solvable. In any case by Isaacs Corollary 8.4 G is solvable.

