MATH 817 ASSIGNMENT 4 SOLUTIONS

(1) (a) Let

$$
c=A \xrightarrow{\alpha} C \stackrel{\beta}{\longleftrightarrow} B
$$

be an object of \mathcal{C}^{\prime}. Then define id_{c} to be id_{C} in \mathcal{C}, which is a valid morphism of \mathcal{C}^{\prime} since

commutes. If θ and ϕ are morphisms of \mathcal{C}^{\prime} such that

and

commute then so does

Thus $\phi \circ \theta$ is a morphism of \mathcal{C}^{\prime}.
Composition in \mathcal{C}^{\prime} is associative since composition in \mathcal{C} is associative so all three columns of the commutative diagram for the composition in \mathcal{C}^{\prime} can be taken in either order. Also $\mathrm{id}_{C^{\prime}} \circ \theta=\theta \circ \mathrm{id}_{C}$ so the middle column of the commutative diagram for each identity composition is simply θ, and the outer columns are always just id_{A} and id_{B} so the identity axiom holds in \mathcal{C}^{\prime}. Make the hom sets of \mathcal{C}^{\prime} disjoint by fiat (that is a morphism of \mathcal{C}^{\prime} is a morphism of \mathcal{C} satisfying the required commutativity along with the information of the domain and range objects.)
(b) An initial object in \mathcal{C}^{\prime} is a diagram

$$
A \xrightarrow{\alpha} I \stackrel{\beta}{\longleftrightarrow} B
$$

such that for every other object

$$
A \xrightarrow{\alpha^{\prime}} C^{\prime} \stackrel{\beta^{\prime}}{\longleftrightarrow} B
$$

there is a unique morphism

contracing the id edges we get exactly the diagram for the coproduct of A and B in \mathcal{C}.
(c) Let A and B again be objects in a category \mathcal{C}. Define a new category $\mathcal{C}^{\prime \prime}$ whose objects are diagrams

$$
A \stackrel{p}{\leftrightarrows} C \xrightarrow{q} B
$$

where C is an object in \mathcal{C} and p and q are morphisms in \mathcal{C}. Define a morphism in $\mathcal{C}^{\prime \prime}$ to be a morphism θ in \mathcal{C} that makes the following diagram commute

Define composition by stacking squares and let the identity morphism of $\mathcal{C}^{\prime \prime}$ come from the identity morphism in the middle column as in the previous construction. Then the composition and identity morphisms are again inherited from the same properties of \mathcal{C} and the hom sets can again be made disjoint by fiat. A terminal object of $\mathcal{C}^{\prime \prime}$ is a diagram

$$
A \stackrel{p}{\longleftarrow} T \xrightarrow{q} B
$$

such that for every other object

$$
A \stackrel{p^{\prime}}{\leftrightarrows} C^{\prime} \xrightarrow{q^{\prime}} B
$$

there is a unique morphism

contracing the id edges we get exactly the diagram for the product of A and B in \mathcal{C}.
(2) Let A, B, C be abelian groups with homomorphisms $\phi: A \rightarrow C, \psi: B \rightarrow C$. Let $P=\{(a, b) \in A \times B \mid \phi(a)=\psi(b)\}$. Then P is an abelian group as $\phi(1)=1=\psi(1)$ so $(1,1) \in P ; \phi(a)=\psi(b)$ and $\phi\left(a^{\prime}\right)=\psi\left(b^{\prime}\right)$ implies $\phi\left(a a^{\prime}\right)=\psi\left(b b^{\prime}\right)$ so P is closed under multiplication; and $\phi(a)=\psi(b)$ implies $\phi\left(a^{-1}\right)=\psi\left(b^{-1}\right)$ so P is closed under
inverses. Let $\alpha: P \rightarrow A$ be projection onto the first coordinate and let $\beta: P \rightarrow B$ be projection onto the second coordinate, then

commutes. If

also commutes then we can construct $\theta: D \rightarrow P$ by $\theta(d)=\left(\alpha^{\prime}(d), \beta^{\prime}(d)\right)$. This does land in P because (1) commutes so $\phi\left(\alpha^{\prime}(d)\right)=\psi\left(\beta^{\prime}(d)\right)$, and it satisfies the required commutativity because $\alpha(\theta(d))=\alpha^{\prime}(d)$ and likewise for β. Finally this morphism is unique because if $\eta: D \rightarrow P$ is also such a morphism then for all $d \in D, \alpha(\eta(d))=\alpha^{\prime}(d)=\alpha(\theta(d))$ and likewise $\beta(\eta(d))=\beta(\theta(d))$ which implies that $\eta(d)=\theta(d)$. Therefore P is the pullback.
(3) Let $T(G)=G / G^{\prime}$ for any group G. For a group homomorphism let $T(\phi: G \rightarrow$ $H)=T(\phi): G / G^{\prime} \rightarrow H / H^{\prime}$ where $T(\phi)\left(G^{\prime} x\right)=H^{\prime} \phi(x) . T(\phi)$ is well defined since if $G^{\prime} x=G^{\prime} y$ then $x y^{-1} \in G^{\prime}$ so $x y^{-1}=[a, b]$ so $\phi(x) \phi(y)^{-1}=\phi\left(x y^{-1}\right)=[\phi(a), \phi(b)]$ which tells us that $H^{\prime} \phi(x)=H^{\prime} \phi(y) . T(\phi)$ is a homomorphism since $T(\phi)\left(G^{\prime} x y\right)=$ $H^{\prime} \phi(x y)=H^{\prime} \phi(x) \phi(y) . T$ respects compositions since if also $\psi: H \rightarrow K$, then $T(\psi \circ \phi)\left(G^{\prime} x\right)=K^{\prime}(\psi \circ \phi)(x)$ while $T(\psi) \circ T(\phi)\left(G^{\prime} x\right)=T(\psi)\left(H^{\prime} \phi(x)\right)=K^{\prime}(\psi \circ \phi)(x)$. T respects identity morphisms since $T\left(\operatorname{id}_{G}\right)(x)=G^{\prime} x=\operatorname{id}_{G / G^{\prime}}\left(G^{\prime} x\right)$. Thus T is a functor.
(4) Let U be the forgetful functor from groups to sets. We need a natural transformation τ such that

for any group homomorphism $f: G \rightarrow H$, and such that each τ_{G} is a set bijection. Note that any $h \in \operatorname{Hom}(\mathbb{Z}, G)$ is determined by where it sends 1 , and that since \mathbb{Z} is freely generated by 1 , any value for $h(1)$ is valid. So define $\tau_{G}: \operatorname{Hom}(\mathbb{Z}, G) \rightarrow U G$ by $\tau_{G}(h)=h(1)$. This is a set bijection by the above observations. The required diagram commutes because $f\left(\tau_{G}(h)\right)=f(h(1))=f_{*}(h)(1)=\tau_{H}\left(f_{*}(h)\right)$. Thus the forgetful functor from groups to sets is represented by \mathbb{Z}.
(5) Let $D_{8}=\left\langle a, b \mid a^{4}=b^{2}=1, b a b=a^{3}\right\rangle$ and let $Z_{2}=\left\langle c \mid c^{2}=1\right\rangle$. Write $G=\langle a, b, c| a^{4}=$ $\left.b^{2}=c^{2}=1, b a b=a^{3}, a c=c a, b c=c b\right\rangle$. Let $a^{x}=a^{2}, b^{x}=c$ and $c^{x}=b$. To check that this action of x defines an endomorphism of G it suffices to check that all the
relations defining G are in its kernel. Check

$$
\begin{aligned}
& \left(a^{x}\right)^{4}=a^{8}=1 \\
& \left(b^{x}\right)^{2}=c^{2}=1 \\
& \left(c^{x}\right)^{2}=b^{2}=1 \\
& b^{x} a^{x} b^{x} a^{x}=c a^{2} c a^{2}=1 \\
& \left(a^{x}\right)^{-1}\left(c^{x}\right)^{-1} a^{x} c^{x}=a^{-2} b^{-1} a^{2} b=1 \\
& \left(b^{x}\right)^{-1}\left(c^{x}\right)^{-1} b^{x} c^{x}=c^{-1} b^{-1} c b=1
\end{aligned}
$$

Now $Z(G)=\left\{1, a^{2}, c, a^{2} c\right\}$, but $c^{x}=b$, so $Z(G)$ is not an X-subgroup.

