MATH 817 ASSIGNMENT 5

DUE NOVEMBER 19, 2009, IN CLASS

If your assignment must be late for any reason please notify me (by email, phone or in person) before the assignment is due. There will be no retroactive lates.
(1) (Isaacs problem 11.8) Let G be an X-group with the property that whenever \mathcal{H} is a linearly ordered collection of proper X-subgroups of G, then $\bigcup \mathcal{H}<G$. Show that G is finitely generated. Hint: Zorn's lemma.
(2) (Isaacs problem 12.24) Let B and C be subrings of A with $1_{B}=1_{C}=1_{A}$. Write A_{B} for A viewed as a right B module and ${ }_{C} A$ for A viewed as a left C module. Let

$$
R=\left\{\left[\begin{array}{ll}
b & 0 \\
a & c
\end{array}\right]: a \in A, b \in B, c \in C\right\} \text { and } I=\left\{\left[\begin{array}{ll}
0 & 0 \\
a & 0
\end{array}\right]: a \in A\right\}
$$

(a) Show that R is a ring and that I is an ideal of R.
(b) Show that $R / I \cong B \oplus C$.
(c) Show that I is noetherian or artinian as a right R module iff A_{B} is noetherian or artinian.
(d) Show that I is noetherian or artinian as a left R module iff ${ }_{C} A$ is noetherian or artinian.
(e) In the case $A=B=\mathbb{R}$ and $C=\mathbb{Q}$, show that R is right noetherian and right artinian but is neither left noetherian nor left artinian.
(3) Let V and W be finite dimensional vector spaces over a field F. Let $S: V \rightarrow V$ be a linear transformation with matrix A and let $T: W \rightarrow W$ be a linear transformation with matrix B. What is the matrix of $S \otimes T: V \otimes_{F} W \rightarrow V \otimes_{F} W$?
(4) Let $C=\mathbb{Z} / 2 \mathbb{Z}$. Let $C(x)$ be the field of rational functions in x over C. Prove that $C(x) \otimes_{C\left(x^{2}\right)} C(x)$ has nonzero nilpotent elements.
(5) (Isaacs problem 13.7) Fix a prime p and consider the ring

$$
L_{p}=\{m / n \in \mathbb{Q}: m, n \in Z, p \nmid n\} .
$$

Compute $J\left(L_{p}\right)$.

