MATH 817 ASSIGNMENT 6

DUE DECEMBER 3, 2009, IN CLASS

If your assignment must be late for any reason please notify me (by email, phone or in person) **before** the assignment is due. There will be no retroactive lates.

- (1) (Isaacs problem 13.10) Let R be a ring and $e \in R$ an idempotent. Show that J(eRe) = eJ(R)e.
- (2) A right ideal I of R is small if for every right ideal K

$$K + I = R \implies K = R.$$

Prove that I is small iff $I \subseteq J(R)$.

- (3) Let G be a group and $\mathbb{C}[G]$ its group ring over \mathbb{C} .
 - (a) Show that every element of the form λa , $\lambda \in \mathbb{C} \setminus \{0\}$, $a \in J(\mathbb{C}[G])$, is a unit in $\mathbb{C}[G]$.
 - (b) Suppose G is countable. For fixed $a \in J(\mathbb{C}[G])$, show that

$$\mathcal{S} = \left\{ \frac{1}{\lambda - a} : \lambda \in \mathbb{C} \smallsetminus \{0\} \right\}$$

is linearly dependent over \mathbb{C} .

- (c) Suppose G is countable. Show that every element of $J(\mathbb{C}[G])$ is algebraic over \mathbb{C} .
- (d) Suppose G is countable. Show that $J(\mathbb{C}[G])$ is nil.
- (e) Suppose G is any group. Show that $J(\mathbb{C}[G])$ is nil.
- (f) For $\alpha = \sum_{i=1}^{n} \lambda_i g_i \in \mathbb{C}[G]$ define $\alpha^* = \sum_{i=1}^{n} \overline{\lambda_i} g_i^{-1}$, where $\overline{}$ denotes complex conjugation. If $0 \neq \alpha \in J(\mathbb{C}[G])$ show that $\alpha \alpha^*$ is not nilpotent.
- (g) Conclude (Rickart, Amitsur) that for any group $J(\mathbb{C}[G]) = 0$.
- (4) Describe the structure of $\mathbb{C}[S_3]$.
- (5) Calculate the character table of D_{12} .