
MATH 817 ASSIGNMENT 6 SOLUTIONS

(1) Note first that eRe is a ring with multiplicative identity e1e = e2 = e. Note also that
for any x ∈ eRe, exe = x.

Take any x ∈ eJ(R)e. Then x = ere where r ∈ J(R). Let I be the ideal
generated by x in eRe. Take any element xs ∈ I where s ∈ eRe. J(R) is an ideal
so xs = eres ∈ J(R), so xs is quasiregular in R. Let u be a unit of R such that
(1−xs)u = 1. Then (e−xs)(eue) = eue−xseue = eue−exseeue = eue−eexseue =
eue − exsue = e(1 − xs)ue = e1e = e. So all elements of I are quasiregular in eRe,
so x ∈ I ⊆ J(eRe). Thus eJ(R)e ⊆ J(eRe).

On the other hand let U be a simple right R-module. Then Ue is a right eRe-
module. If Ue 6= 0 then take ue ∈ Ue, u ∈ U . Then ueR = U by simplicity of U
so ueRe = Ue. Thus Ue is generated by any of its nonzero elements and so it is
also simple. Suppose x ∈ J(eRe). Then x = ere with r ∈ R. x annihilates every
simple right eRe-module so Uex = 0. Thus ex ∈ J(R) so x = exe ∈ eJ(R)e giving
J(eRe) ⊆ eJ(R)e.

(2) Let I ⊆ J(R) be a right ideal. Let K be another right ideal such that K + I = R.
Then we can write 1 = k+ i with k ∈ K and i ∈ I. But i is quasiregular so k = 1− i
is a unit. Thus K = R. So I is small.

Let I be small. Take any i ∈ I. Suppose i is not quasiregular. Then K = 〈1− i〉
is a proper ideal of R but K + I = R which is a contradiction. Thus all elements of
I are quasiregular and so I ⊆ J(R).

(3) (a) λ − a = λ(1 − λ−1a). λ−1a ∈ J(C[G]) hence is quasiregular. Thus λ − a is a
product of units and hence a unit itself.

(b) G is a basis for C[G] considered as a vector space over C. The elements of S
are distinct and so S is uncountable, but C[G] has a countable basis, thus S is
linearly dependent.

(c) Take a ∈ J(C[G]) and form S as in the previous part. S is linearly dependent
so

n∑
i=1

1

λi − a
= 0

finding a common denominator we get a polynomial P (a) of degree n − 1 such
that

P (a)∏n
i=1 λi − a

= 0

Thus P (a) = 0 so a is algebraic over C.
(d) Take a ∈ J(C[G]). By the previous part a is algebraic over C. So there is some

polynomial P over C, such that P (a) = 0. Note that the constant term of P
must be in J(C[G]) since J(C[G]) is an ideal. Thus since C is a field and the
J(C[G]) is proper, P has zero constant term. So write

0 = P (a) = cakQ(a)
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where Q is a polynomial with constant term 1 and c ∈ C r {0}. But then
Q(a) = (−x) + 1 for some x ∈ J(C[G]) so Q(a) is a unit and so multiplying on
the right by its inverse we get 0 = cak, but c is also a unit, so 0 = ak. Thus
J(C[G]) is nil.

(e) Take a ∈ J(C[G]). Then a =
∑n

i=1 cigi for some finite sum. Let H = 〈g1, . . . , gn〉.
The ideal AG generated by a in C[G] has all elements quasiregular (since it is
inside J(C[G])). Thus every element in the the ideal AH generated by a in C[H]
is quasiregular in C[G]).
Moreover the inverses can be chosen in J(C[H]) because if (1 − ar)u = 1 with
r ∈ C[H], then choose a set S of coset representatives of G/H with 1 representing
H (transversal) and write u = u1s1 + · · ·+ uksk with ui ∈ C[H] and si ∈ S. But
then

∑
(1− ar)uisi = 1 with (1− ar)ui ∈ C[H], so by the disjointness of cosets

we see that exactly one si is nonzero and that one must be 1 representing H,
giving (1− ar)si = 1 for some i.
Thus every element in the the ideal AH generated by a in C[H] is also quasireg-
ular in C[H]. Hence a ∈ AH ⊆ J(C[H]). But by the previous part J(C[H]) is
nil, so a is nilpotent, so J(C[G]) is nil.

(f) Take 0 6= α ∈ J(C[G]). Write α =
∑
cgg with at least one cg 6= 0. Then αα∗ is

nonzero since the coefficient of 1 is
∑
cg c̄g > 0. But (αα∗)∗ = (α∗)∗α∗ = αα∗.

Let β = αα∗, then β2 = ββ∗ 6= 0 and (β2)∗ = β2. Continuing likewise β4 6=
0 . . . β2k 6= 0. So β is not nilpotent.

(g) Take 0 6= α ∈ J(C[G]). αα∗ ∈ J(C[G]) since J(C[G]) is an ideal. By the
previous part this element is not nilpotent, but by the part before J(C[G]) is
nil. Contradiction. Thus J(C[G]) = 0.

(4) By the previous part we know that C[S3] is a quasiregular ring, and since it is a finite
dimensional algebra it is right artinian. Thus C[S3] is wedderburn, and so it must be
a sum of full matrix rings over C. |S3| = 6, and 6 can be written as a sum of squares
in the following ways: 6 = 1 + 1 + 4, 6 = 1 + 1 + 1 + 1 + 1 + 1 but S3 is not abelian,
so C[S3] 6∼= C⊕ C⊕ C⊕ C⊕ C⊕ C. Thus C[S3] ∼= C⊕ C⊕M2(C).

(5) D12 = 〈a, b|a6 = b2 = 1, bab = a5〉. Then |D12| = 12 and, by calculation, D′12 =
〈a2|a6 = 1〉. Thus there are 12/3 = 4 linear characters and so, to make 12 as the sum
of the squares of the orders, the orders of the characters must be 1, 1, 1, 1, 2, 2.

Take a`. The conjugates of a` are bεa−ka`bεak which is a` if ε = 0 and a−` if ε = 1.
Likewise compute that the conjugates of a`b are a`−2kb and a2k−`b for any integer k.
Thus representatives of the conjugacy classes of D12 are 1, a, a2, a3, b, ab. So far we
know

1 a a2 a3 b ab
χ1 1 1 1 1 1 1
χ2 1 1
χ3 1 1
χ4 1 1
χ5 2
χ6 2

Consider D12/D
′
12 in more detail. D12/D

′
12 = 〈a, b|a2 = b2 = 1, ab = ba〉. So it is

isomorphic to the direct product of two cyclic groups of order 2 which has characters
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the four different choices of ±1 on each factor. Thus

1 a a2 a3 b ab
χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1
χ3 1 1 1 1 −1 −1
χ4 1 −1 1 −1 −1 1
χ5 2
χ6 2

Now use orthogonality. Fill in the table

1 a a2 a3 b ab
χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1
χ3 1 1 1 1 −1 −1
χ4 1 −1 1 −1 −1 1
χ5 2 q r s t u
χ6 2 v w x y z

Get the system of linear equations

2 + 2q + 2r + s+ 3t+ 3u = 0

2− 2q + 2r − s+ 3t− 3u = 0

2 + 2q + 2r + s− 3t− 3u = 0

2− 2q + 2r − s− 3t+ 3u = 0

2 + 2v + 2w + x+ 3y + 3z = 0

2− 2v + 2w − x+ 3y − 3z = 0

2 + 2v + 2w + x− 3y − 3z = 0

2− 2v + 2w − x− 3y + 3z = 0

and the nonlinear equations

4 + 2q2 + 2r2 + s2 + 3t2 + 3u2 = 12

4 + 2v2 + 2w2 + x2 + 3y2 + 3z2 = 12

4 + 2qv + 2rw + sx+ 3ty + 3uz = 0

Solving just the linear part gives

w = r = −1, t = u = y = z = 0, s = −2q, x = −2v

so the nonlinear part becomes

6 + 6q2 = 12

6 + 6v2 = 12

6 + 6qv = 0
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so qv = −1, q2 = 1, v2 = 1, giving the final table

1 a a2 a3 b ab
χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1
χ3 1 1 1 1 −1 −1
χ4 1 −1 1 −1 −1 1
χ5 2 1 −1 −2 0 0
χ6 2 −1 −1 2 0 0
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