MATH 817 ASSIGNMENT 6 SOLUTIONS

(1) Note first that eRe is a ring with multiplicative identity $e1e = e^2 = e$. Note also that for any $x \in eRe$, exe = x.

Take any $x \in eJ(R)e$. Then x = ere where $r \in J(R)$. Let I be the ideal generated by x in eRe. Take any element $xs \in I$ where $s \in eRe$. J(R) is an ideal so $xs = eres \in J(R)$, so xs is quasiregular in R. Let u be a unit of R such that (1-xs)u = 1. Then (e-xs)(eue) = eue-xseue = eue-exseue = eue-eexseue = eue-eexseue = eue-exseue = e(1-xs)ue = e1e = e. So all elements of I are quasiregular in eRe, so $x \in I \subseteq J(eRe)$. Thus $eJ(R)e \subseteq J(eRe)$.

On the other hand let U be a simple right R-module. Then Ue is a right eRemodule. If $Ue \neq 0$ then take $ue \in Ue$, $u \in U$. Then ueR = U by simplicity of Uso ueRe = Ue. Thus Ue is generated by any of its nonzero elements and so it is also simple. Suppose $x \in J(eRe)$. Then x = ere with $r \in R$. x annihilates every simple right eRe-module so Uex = 0. Thus $ex \in J(R)$ so $x = exe \in eJ(R)e$ giving $J(eRe) \subseteq eJ(R)e$.

(2) Let $I \subseteq J(R)$ be a right ideal. Let K be another right ideal such that K + I = R. Then we can write 1 = k + i with $k \in K$ and $i \in I$. But i is quasiregular so k = 1 - i is a unit. Thus K = R. So I is small.

Let I be small. Take any $i \in I$. Suppose i is not quasiregular. Then $K = \langle 1 - i \rangle$ is a proper ideal of R but K + I = R which is a contradiction. Thus all elements of I are quasiregular and so $I \subseteq J(R)$.

- (3) (a) $\lambda a = \lambda(1 \lambda^{-1}a)$. $\lambda^{-1}a \in J(\mathbb{C}[G])$ hence is quasiregular. Thus λa is a product of units and hence a unit itself.
 - (b) G is a basis for $\mathbb{C}[G]$ considered as a vector space over \mathbb{C} . The elements of \mathcal{S} are distinct and so \mathcal{S} is uncountable, but $\mathbb{C}[G]$ has a countable basis, thus \mathcal{S} is linearly dependent.
 - (c) Take $a \in J(\mathbb{C}[G])$ and form S as in the previous part. S is linearly dependent so

$$\sum_{i=1}^{n} \frac{1}{\lambda_i - a} = 0$$

finding a common denominator we get a polynomial P(a) of degree n-1 such that

$$\frac{P(a)}{\prod_{i=1}^{n} \lambda_i - a} = 0$$

Thus P(a) = 0 so a is algebraic over \mathbb{C} .

(d) Take $a \in J(\mathbb{C}[G])$. By the previous part a is algebraic over \mathbb{C} . So there is some polynomial P over \mathbb{C} , such that P(a) = 0. Note that the constant term of Pmust be in $J(\mathbb{C}[G])$ since $J(\mathbb{C}[G])$ is an ideal. Thus since \mathbb{C} is a field and the $J(\mathbb{C}[G])$ is proper, P has zero constant term. So write

$$0 = P(a) = ca^k Q(a)$$

where Q is a polynomial with constant term 1 and $c \in \mathbb{C} \setminus \{0\}$. But then Q(a) = (-x) + 1 for some $x \in J(\mathbb{C}[G])$ so Q(a) is a unit and so multiplying on the right by its inverse we get $0 = ca^k$, but c is also a unit, so $0 = a^k$. Thus $J(\mathbb{C}[G])$ is nil.

(e) Take $a \in J(\mathbb{C}[G])$. Then $a = \sum_{i=1}^{n} c_i g_i$ for some finite sum. Let $H = \langle g_1, \ldots, g_n \rangle$. The ideal A_G generated by a in $\mathbb{C}[G]$ has all elements quasiregular (since it is inside $J(\mathbb{C}[G])$). Thus every element in the the ideal A_H generated by a in $\mathbb{C}[H]$ is quasiregular in $\mathbb{C}[G]$). Moreover the inverses can be chosen in $J(\mathbb{C}[H])$ because if (1 - ar)u = 1 with $r \in \mathbb{C}[H]$, then choose a set S of coset representatives of G/H with 1 representing H (transversal) and write $u = u_1s_1 + \cdots + u_ks_k$ with $u_i \in \mathbb{C}[H]$ and $s_i \in S$. But then $\sum (1 - ar)u_i s_i = 1$ with $(1 - ar)u_i \in \mathbb{C}[H]$, so by the disjointness of cosets we see that exactly one s_i is nonzero and that one must be 1 representing H, giving $(1 - ar)s_i = 1$ for some i. Thus every element in the the ideal A_H generated by a in $\mathbb{C}[H]$ is also quasireg-

Thus every element in the ideal A_H generated by a in $\mathbb{C}[H]$ is also quasiregular in $\mathbb{C}[H]$. Hence $a \in A_H \subseteq J(\mathbb{C}[H])$. But by the previous part $J(\mathbb{C}[H])$ is nil, so a is nilpotent, so $J(\mathbb{C}[G])$ is nil.

- (f) Take $0 \neq \alpha \in J(\mathbb{C}[G])$. Write $\alpha = \sum c_g g$ with at least one $c_g \neq 0$. Then $\alpha \alpha^*$ is nonzero since the coefficient of 1 is $\sum c_g \bar{c}_g > 0$. But $(\alpha \alpha^*)^* = (\alpha^*)^* \alpha^* = \alpha \alpha^*$. Let $\beta = \alpha \alpha^*$, then $\beta^2 = \beta \beta^* \neq 0$ and $(\beta^2)^* = \beta^2$. Continuing likewise $\beta^4 \neq 0 \dots \beta^{2^k} \neq 0$. So β is not nilpotent.
- (g) Take $0 \neq \alpha \in J(\mathbb{C}[G])$. $\alpha \alpha^* \in J(\mathbb{C}[G])$ since $J(\mathbb{C}[G])$ is an ideal. By the previous part this element is not nilpotent, but by the part before $J(\mathbb{C}[G])$ is nil. Contradiction. Thus $J(\mathbb{C}[G]) = 0$.
- (4) By the previous part we know that $\mathbb{C}[S_3]$ is a quasiregular ring, and since it is a finite dimensional algebra it is right artinian. Thus $\mathbb{C}[S_3]$ is wedderburn, and so it must be a sum of full matrix rings over \mathbb{C} . $|S_3| = 6$, and 6 can be written as a sum of squares in the following ways: 6 = 1 + 1 + 4, 6 = 1 + 1 + 1 + 1 + 1 + 1 but S_3 is not abelian, so $\mathbb{C}[S_3] \not\cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. Thus $\mathbb{C}[S_3] \cong \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C})$.
- so $\mathbb{C}[S_3] \not\cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. Thus $\mathbb{C}[S_3] \cong \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C})$. (5) $D_{12} = \langle a, b | a^6 = b^2 = 1, bab = a^5 \rangle$. Then $|D_12| = 12$ and, by calculation, $D'_{12} = \langle a^2 | a^6 = 1 \rangle$. Thus there are 12/3 = 4 linear characters and so, to make 12 as the sum of the squares of the orders, the orders of the characters must be 1, 1, 1, 1, 2, 2.

Take a^{ℓ} . The conjugates of a^{ℓ} are $b^{\epsilon}a^{-k}a^{\ell}b^{\epsilon}a^{k}$ which is a^{ℓ} if $\epsilon = 0$ and $a^{-\ell}$ if $\epsilon = 1$. Likewise compute that the conjugates of $a^{\ell}b$ are $a^{\ell-2k}b$ and $a^{2k-\ell}b$ for any integer k. Thus representatives of the conjugacy classes of D_{12} are $1, a, a^2, a^3, b, ab$. So far we know

Consider D_{12}/D'_{12} in more detail. $D_{12}/D'_{12} = \langle a, b | a^2 = b^2 = 1, ab = ba \rangle$. So it is isomorphic to the direct product of two cyclic groups of order 2 which has characters

the four different choices of ± 1 on each factor. Thus

Now use orthogonality. Fill in the table

	1	a	a^2	a^3	b	ab
χ_1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1
χ_3	1	1	1	1	-1	-1
χ_4	1	-1	1	-1	-1	1
χ_5	2	q	r	s	t	u
χ_6	2	v	w	x	y	z

Get the system of linear equations

$$\begin{array}{l} 2+2q+2r+s+3t+3u=0\\ 2-2q+2r-s+3t-3u=0\\ 2+2q+2r+s-3t-3u=0\\ 2-2q+2r-s-3t+3u=0\\ 2+2v+2w+x+3y+3z=0\\ 2-2v+2w-x+3y-3z=0\\ 2+2v+2w+x-3y-3z=0\\ 2-2v+2w-x-3y+3z=0\\ \end{array}$$

and the nonlinear equations

$$4 + 2q^{2} + 2r^{2} + s^{2} + 3t^{2} + 3u^{2} = 12$$

$$4 + 2v^{2} + 2w^{2} + x^{2} + 3y^{2} + 3z^{2} = 12$$

$$4 + 2qv + 2rw + sx + 3ty + 3uz = 0$$

Solving just the linear part gives

$$w = r = -1, t = u = y = z = 0, s = -2q, x = -2v$$

so the nonlinear part becomes

$$6+6q^2 = 12$$

$$6+6v^2 = 12$$

$$6+6qv = 0$$

$$3$$

so qv = -1, $q^2 = 1$, $v^2 = 1$, giving the final table

	1	a	a^2	a^3	b	ab
χ_1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1
				1		
χ_4	1	-1	1	-1	-1	1
χ_5	2	1	-1	-2	0	0
χ_6	2	-1	-1	2	0	0