MATH 817 ASSIGNMENT 6 SOLUTIONS

(1) Note first that $e R e$ is a ring with multiplicative identity $e 1 e=e^{2}=e$. Note also that for any $x \in e R e$, exe $=x$.

Take any $x \in e J(R) e$. Then $x=$ ere where $r \in J(R)$. Let I be the ideal generated by x in $e R e$. Take any element $x s \in I$ where $s \in e R e . J(R)$ is an ideal so $x s=$ eres $\in J(R)$, so $x s$ is quasiregular in R. Let u be a unit of R such that $(1-x s) u=1$. Then $(e-x s)(e u e)=$ eue - xseue $=$ eue - exseeve $=e$ eue - eexseue $=$ $e u e-e x s u e=e(1-x s) u e=e 1 e=e$. So all elements of I are quasiregular in $e R e$, so $x \in I \subseteq J(e R e)$. Thus $e J(R) e \subseteq J(e R e)$.

On the other hand let U be a simple right R-module. Then $U e$ is a right $e R e-$ module. If $U e \neq 0$ then take $u e \in U e, u \in U$. Then $u e R=U$ by simplicity of U so $u e R e=U e$. Thus $U e$ is generated by any of its nonzero elements and so it is also simple. Suppose $x \in J(e R e)$. Then $x=$ ere with $r \in R . x$ annihilates every simple right $e R e$-module so $U e x=0$. Thus $e x \in J(R)$ so $x=e x e \in e J(R) e$ giving $J(e R e) \subseteq e J(R) e$.
(2) Let $I \subseteq J(R)$ be a right ideal. Let K be another right ideal such that $K+I=R$. Then we can write $1=k+i$ with $k \in K$ and $i \in I$. But i is quasiregular so $k=1-i$ is a unit. Thus $K=R$. So I is small.

Let I be small. Take any $i \in I$. Suppose i is not quasiregular. Then $K=\langle 1-i\rangle$ is a proper ideal of R but $K+I=R$ which is a contradiction. Thus all elements of I are quasiregular and so $I \subseteq J(R)$.
(3) (a) $\lambda-a=\lambda\left(1-\lambda^{-1} a\right) . \bar{\lambda}^{-1} a \in J(\mathbb{C}[G])$ hence is quasiregular. Thus $\lambda-a$ is a product of units and hence a unit itself.
(b) G is a basis for $\mathbb{C}[G]$ considered as a vector space over \mathbb{C}. The elements of \mathcal{S} are distinct and so \mathcal{S} is uncountable, but $\mathbb{C}[G]$ has a countable basis, thus \mathcal{S} is linearly dependent.
(c) Take $a \in J(\mathbb{C}[G])$ and form \mathcal{S} as in the previous part. \mathcal{S} is linearly dependent so

$$
\sum_{i=1}^{n} \frac{1}{\lambda_{i}-a}=0
$$

finding a common denominator we get a polynomial $P(a)$ of degree $n-1$ such that

$$
\frac{P(a)}{\prod_{i=1}^{n} \lambda_{i}-a}=0
$$

Thus $P(a)=0$ so a is algebraic over \mathbb{C}.
(d) Take $a \in J(\mathbb{C}[G])$. By the previous part a is algebraic over \mathbb{C}. So there is some polynomial P over \mathbb{C}, such that $P(a)=0$. Note that the constant term of P must be in $J(\mathbb{C}[G])$ since $J(\mathbb{C}[G])$ is an ideal. Thus since \mathbb{C} is a field and the $J(\mathbb{C}[G])$ is proper, P has zero constant term. So write

$$
0=P(a)=c a^{k} Q(a)
$$

where Q is a polynomial with constant term 1 and $c \in \mathbb{C} \backslash\{0\}$. But then $Q(a)=(-x)+1$ for some $x \in J(\mathbb{C}[G])$ so $Q(a)$ is a unit and so multiplying on the right by its inverse we get $0=c a^{k}$, but c is also a unit, so $0=a^{k}$. Thus $J(\mathbb{C}[G])$ is nil.
(e) Take $a \in J(\mathbb{C}[G])$. Then $a=\sum_{i=1}^{n} c_{i} g_{i}$ for some finite sum. Let $H=\left\langle g_{1}, \ldots, g_{n}\right\rangle$. The ideal A_{G} generated by a in $\mathbb{C}[G]$ has all elements quasiregular (since it is inside $J(\mathbb{C}[G])$). Thus every element in the the ideal A_{H} generated by a in $\mathbb{C}[H]$ is quasiregular in $\mathbb{C}[G]$).
Moreover the inverses can be chosen in $J(\mathbb{C}[H])$ because if $(1-a r) u=1$ with $r \in \mathbb{C}[H]$, then choose a set S of coset representatives of G / H with 1 representing H (transversal) and write $u=u_{1} s_{1}+\cdots+u_{k} s_{k}$ with $u_{i} \in \mathbb{C}[H]$ and $s_{i} \in S$. But then $\sum(1-a r) u_{i} s_{i}=1$ with $(1-a r) u_{i} \in \mathbb{C}[H]$, so by the disjointness of cosets we see that exactly one s_{i} is nonzero and that one must be 1 representing H, giving $(1-a r) s_{i}=1$ for some i.
Thus every element in the the ideal A_{H} generated by a in $\mathbb{C}[H]$ is also quasiregular in $\mathbb{C}[H]$. Hence $a \in A_{H} \subseteq J(\mathbb{C}[H])$. But by the previous part $J(\mathbb{C}[H])$ is nil, so a is nilpotent, so $J(\mathbb{C}[G])$ is nil.
(f) Take $0 \neq \alpha \in J(\mathbb{C}[G])$. Write $\alpha=\sum c_{g} g$ with at least one $c_{g} \neq 0$. Then $\alpha \alpha^{*}$ is nonzero since the coefficient of 1 is $\sum c_{g} \bar{c}_{g}>0$. But $\left(\alpha \alpha^{*}\right)^{*}=\left(\alpha^{*}\right)^{*} \alpha^{*}=\alpha \alpha^{*}$. Let $\beta=\alpha \alpha^{*}$, then $\beta^{2}=\beta \beta^{*} \neq 0$ and $\left(\beta^{2}\right)^{*}=\beta^{2}$. Continuing likewise $\beta^{4} \neq$ $0 \ldots \beta^{2^{k}} \neq 0$. So β is not nilpotent.
(g) Take $0 \neq \alpha \in J(\mathbb{C}[G])$. $\alpha \alpha^{*} \in J(\mathbb{C}[G])$ since $J(\mathbb{C}[G])$ is an ideal. By the previous part this element is not nilpotent, but by the part before $J(\mathbb{C}[G])$ is nil. Contradiction. Thus $J(\mathbb{C}[G])=0$.
(4) By the previous part we know that $\mathbb{C}\left[S_{3}\right]$ is a quasiregular ring, and since it is a finite dimensional algebra it is right artinian. Thus $\mathbb{C}\left[S_{3}\right]$ is wedderburn, and so it must be a sum of full matrix rings over \mathbb{C}. $\left|S_{3}\right|=6$, and 6 can be written as a sum of squares in the following ways: $6=1+1+4,6=1+1+1+1+1+1$ but S_{3} is not abelian, so $\mathbb{C}\left[S_{3}\right] \neq \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. Thus $\mathbb{C}\left[S_{3}\right] \cong \mathbb{C} \oplus \mathbb{C} \oplus M_{2}(\mathbb{C})$.
(5) $D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{5}\right\rangle$. Then $\left|D_{1} 2\right|=12$ and, by calculation, $D_{12}^{\prime}=$ $\left\langle a^{2} \mid a^{6}=1\right\rangle$. Thus there are $12 / 3=4$ linear characters and so, to make 12 as the sum of the squares of the orders, the orders of the characters must be $1,1,1,1,2,2$.

Take a^{ℓ}. The conjugates of a^{ℓ} are $b^{\epsilon} a^{-k} a^{\ell} b^{\epsilon} a^{k}$ which is a^{ℓ} if $\epsilon=0$ and $a^{-\ell}$ if $\epsilon=1$. Likewise compute that the conjugates of $a^{\ell} b$ are $a^{\ell-2 k} b$ and $a^{2 k-\ell} b$ for any integer k. Thus representatives of the conjugacy classes of D_{12} are $1, a, a^{2}, a^{3}, b, a b$. So far we know

	1	a	a^{2}	a^{3}	b	$a b$
χ_{1}	1	1	1	1	1	1
χ_{2}	1		1			
χ_{3}	1		1			
χ_{4}	1		1			
χ_{5}	2					
χ_{6}	2					

Consider D_{12} / D_{12}^{\prime} in more detail. $D_{12} / D_{12}^{\prime}=\left\langle a, b \mid a^{2}=b^{2}=1, a b=b a\right\rangle$. So it is isomorphic to the direct product of two cyclic groups of order 2 which has characters
the four different choices of ± 1 on each factor. Thus

	1	a	a^{2}	a^{3}	b	$a b$
χ_{1}	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	-1
χ_{3}	1	1	1	1	-1	-1
χ_{4}	1	-1	1	-1	-1	1
χ_{5}	2					
χ_{6}	2					

Now use orthogonality. Fill in the table

	1	a	a^{2}	a^{3}	b	$a b$
χ_{1}	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	-1
χ_{3}	1	1	1	1	-1	-1
χ_{4}	1	-1	1	-1	-1	1
χ_{5}	2	q	r	s	t	u
χ_{6}	2	v	w	x	y	z

Get the system of linear equations

$$
\begin{array}{r}
2+2 q+2 r+s+3 t+3 u=0 \\
2-2 q+2 r-s+3 t-3 u=0 \\
2+2 q+2 r+s-3 t-3 u=0 \\
2-2 q+2 r-s-3 t+3 u=0 \\
2+2 v+2 w+x+3 y+3 z=0 \\
2-2 v+2 w-x+3 y-3 z=0 \\
2+2 v+2 w+x-3 y-3 z=0 \\
2-2 v+2 w-x-3 y+3 z=0
\end{array}
$$

and the nonlinear equations

$$
\begin{aligned}
4+2 q^{2}+2 r^{2}+s^{2}+3 t^{2}+3 u^{2} & =12 \\
4+2 v^{2}+2 w^{2}+x^{2}+3 y^{2}+3 z^{2} & =12 \\
4+2 q v+2 r w+s x+3 t y+3 u z & =0
\end{aligned}
$$

Solving just the linear part gives

$$
w=r=-1, t=u=y=z=0, s=-2 q, x=-2 v
$$

so the nonlinear part becomes

$$
\begin{aligned}
6+6 q^{2} & =12 \\
6+6 v^{2} & =12 \\
6+6 q v & =0 \\
3 &
\end{aligned}
$$

so $q v=-1, q^{2}=1, v^{2}=1$, giving the final table

	1	a	a^{2}	a^{3}	b	$a b$
χ_{1}	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	1	-1
χ_{3}	1	1	1	1	-1	-1
χ_{4}	1	-1	1	-1	-1	1
χ_{5}	2	1	-1	-2	0	0
χ_{6}	2	-1	-1	2	0	0

