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HOMEWORK 3 SOLUTIONS

MATH 818, FALL 2010

Let X € P3 be the projective closure of X. Let X be any component of X. Project
away from where the z axis meets the plane at infinity. We know the projection map

7 X — P?

is regular, and hence 7(X) is closed. By dimension 7(X) has no component of
dimension 2 (if it did it would be onto and then 1.6.3 Theorem 7 would give the
contradiction).

Suppose W()? ) had a component of dimension 0, that is a point P € P? which has
a neighbourhood U C P? such that 7=}(P) = 7= }(U). Let V = U x P! (where the P!
has coordinate z); then 7=*(U) = X N (V) consists only of points on the line parallel
to the z axis containing (P, 0), which is a contradiction because X does not contain
any lines parallel to the z axis, and is closed and pure dimension 1.

Thus 7(X) is pure codimension 1. Now restrict back to affine space and apply

Theorem 3, 1.6.1 to get that Y = 7(X) N A? is a hypersurface and its maximal ideal
is principal. Finally note that Y is exactly the closure of the projection of X parallel
to the z-axis and that any polynomial which vanishes on Y is a polynomial in x,y

which also vanishes on any point of X.
Write

f(xvya Z) = GO(ZL‘,y)Zm +F em(x,y)
Then

fo5 = hw,y, 2)g5" o™ " + g5 2" eago — eogn)
+ g (stuff of degree at most m — 2 in z)
_ h(.flj, n Z) (ggn—leozm—n + 981_2(6190 — eogl)) + ggn—sz—Q(a COHStant)

+ g ?(stuff of degree at most m — 3 in 2)
Continuing likewise get

(@, y,2)90" (7, y) = Wz, y, 2)U(2,y, 2) +v(2,y,2)

where v is of degree at most n — 1 in z. But f(x,y, 2)g5"(z,y) is zero on X and so
by the minimality of g, v depends only on x and y. Thus if g(x,y) is the generator
of the ideal of Y (from the previous question), then g divides v.

Then V(h,g) = V(x, go,g) defines a curve consisting of X along with finitely
many lines parallel to the z axis defined by gy = g = 0.
Pick a point P; on each line L; in V(go, g) which is not in X. Choose an element k
of 2 x which is nonzero on each P;. This is possible, as we can certainly choose an

element f; of Ay which is nonzero on P; and then some linear combinationo of the
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#; will do.

Then X C V(h,g,k), and V(h,g,k) C V(h,g) = X UUJ L;. But no F; is

in V(h,g,k) and V(h, g, k) is closed in X UJ L; so V(g,h, k) = X.

Sh, I1.1.1: Take any f € O, then f is regular on some neighbourhood of z so f € k[U] for some
U a neighbourhood of . Now take f € |Jk[U]; this says that f is regular on some
neighbourhood of x and in particular then it is regular at  and so is in O,.

F, 7-2: Note that I don’t care if you just blowup the singularity (and take the strict transform)
or if you then project onto the x, z plane to get a plane curve back. The latter is what
Fulton calls F' but we didn’t discuss that and either is fine.
(a) Consider each example in turn

Y — X%
Y2 - X3+ X:
Y2 - X3
Y? - X3 - X%

(X2+Y?)?4+3X?%Y - Y3

Substitute y = z? into y — 22z to get 2> — 2z = z(x — 2), and so the
exceptional divisor is given by x = 0,y = 0, and F' = V(y = zz,x = 2).
To check that this is nonsingular calculate the Jacobian matrix

-z —1

1 0

-z 1

and notice that this matrix has rank 2 for all values of z,y, z.
Substitute to get 2® —x — 2?22 = x(2* — 1 —22%),s0 F' = V(y = vz, 2% =
1 + z2?%). The Jacobian matrix is

—z 2x
1 0
—x —2xz

which has rank 2 on the curve since 2x = 0 does not satisfy the second
equation.

Following the same steps we have x® — 222% = 2%(z — 2?) so F' = V(y =
Tz, = 2%) and

—z 1
1 0
—x 2z
has rank 2.
F'=V(y=xz,z+1=2%) and
—z 1
1 0
—x -2z
has rank 2.

Substitute (x? + 222%)? + 3232 — 2323 = 23(x + 2222 + 22 + 32 — 23) s0
F' =V(y=xz,2+ 222> + 22* + 32 — 23 = 0) which has Jacobian matrix

—z 14222
1 0
—x Adxz+4xz +3 — 322

To check the rank of this note that if 1+22% = 0 and 4zz+4223+3—-322 =0
then we do not get a point on the curve. Thus there are no points on the

curve where the rank of the Jacobian is other than 2.
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Sh, 11.4.4:

Sh, I11.1.2:

— 4X?Y?: As in the previous part get (22 4+ 222?)% — 4a*2? = 2*(2?(1 + 2%)3 — 42?).

So F' =V(y = xz,2%(1 + 2?) = 42%). The Jacobian matrix is

—z  2z(1+2%)?
1 0
—z 6z2(1+2%)*—8z

This one finally is still singular at (0,0, 0).

(b) One more time on Y2 — X® we get 2222 — 2° = 22(22 —23) so F/ = V(y =

rz,2* = x°). The Jacobian is

—z —3z2
1 0
-z 2z

This is singular at (0,0,0) and nowhere else, but let’s blow up again. This time
we are blowing up (0,0,0) in A3. Considering blowing up all of A* with coordi-
nates (z,y, z) and with the two new blowup coordinates being (¢, u) this gives the
variety V(y = «t, 2z = zu). Now consider what happens to F’. Substituting we
get 0 = xz —at = x(2 —t) and z%u? — 23 = 2?(u? — x), so the exceptional divisor
is V(z,y,2) and F” =V (z = t,u® = z,y = xt, 2 = xu) which has Jacobian

0O 01 -1 0
-1 0 0 0 2u
—t 1 0 —x O
—u 01 0 -—=z

which has rank 4 for all points on F” and hence F" is smooth. So for Y2 — X?n+!
we should expect to need to blow up n times.
¢ is certainly rational. The inverse map is

(Yo:y1:vy2:ys:ys) = (Yo:Y2:ys3)

and so ¢ is birational to ¢(IP2). Moreover the blowup of P? at (1: 0 : 0) is the variety
in P? x P! given by V (z}y, = z4y}) where the coordinates of the P? are z, ¥}, 2, and
the coordinates of the P! are y/, 5. If we label the coordinates of the image of ¢ by

(g :yy - x) s xhy :yh), then we get

/ / 2 / / / 2
Ty = XoT1 Xy =T] Xy =T1To Y; = ToTa Yy = T3

which satisfies 2}y, = xby]. Furthermore if at least one of z{, or «, is nonzero (call this
set U) then 1 # 0 so dividing by z; we see that ¢ is an isomorphism; on the other
hand if x(, = 2, = 0 then we get the points (0:0:0:2¢:1)and (0:1:0:0:0) in
the image of ¢ all of which are in the closure of ¢(U). Hence the inverse of ¢ is the
blowup.
The function is (z1 — xg)/xo. Consider div(z; — x). The only point of intersection
is (1:1:0) and so by Bezout we know the intersection multiplicity is 2. So div(x; —
zo) =2(1:1:0).

On the other hand the points of intersection of xg = 0 with the curve are (0: 1 : 1)

and (0 : 1 : —i). Again by Bezout we know that each of these intersections has
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Sh, III.1.5:

Sh, TT1.1.12:

multiplicity 1. So div(zp) = (0:1:4)+ (0:1: —4) and so div((x; — x)/z0) = 2(1 :
1:0)—(0:1:4)—(0:1:—3).

Suppose k[X] is a UFD.Consider the proof of 1.6.1 Theorem 3. The only special
property of k[A"] needed in this proof was that this ring is a UFD (we observed this
fact when proving I1.3.1 Theorem 1 which was the same argument applied to O, at
a smooth point). Now one more time apply this argument this time using that k[ X]
is a UFD. Conclude that every pure codimension 1 subvariety is defined by a single
equation and its ideal is principal. Hence, for C' = V(F') we get that divF = C and
thus every prime divisior and so every divisor is principal.

Now suppose CIX = 0. Then in particular every prime divisor is principal, so

for every irreducible codimension 1 subvariety C' there is an f € k(X) such that
div(f) = C. But then div(f) > 0 and so f € k[X]. Now suppose k[X]| does not
have unique factorization; so there exists f,g,h € k[X] irreducible such that f|gh
but f Ag, f Ah. So we have div(gh/f) = V(g) + V(h) — V(f) but we also have
gh/f € k[X] so div(gh/f) > 0 which is a contradiction.
X has one singularity: (0 : 0 : 1). Take any locally principal divisor D of X. By
moving the support away from (0 : 0 : 1) we obtain a divisor D’ with D" ~ D and
with (0:0: 1) € SuppD’. But on the smooth part of X we have all the results on
divisors on smooth curves. In particular we have a well defined notion of degree on
divisor classes on X ~\ (0:0: 1). Suppose D; and Dy were locally principal divisors
of X and suppose D] and D), were divisors on X \ (0:0: 1) with

DlNDi _DQND/2 DlNDQ.

Then D} ~ D) on X so there exists f € k(X) such that D} = D} + div(f). But
(0:0:1) is not in the support of either D} or D} so f € k(X ~(0:0: 1)) with the
same divisor. Thus deg(D}) = deg(D)) and so the degree is well defined on locally
principal divisors of X.

Thus we have

deg : PicX — Z

and this map is onto. The kernel is Pic’X, the locally principal divisors of degree 0,
and so PicX 2 Z @ Pic’X. Now pick any ap € X ~ (0: 0: 1). Consider

¢: X~ (0:0:1) — Pic®X
Pl—)P—CKO

Consider the constructions of addition and negation for elliptic curves. This curve
is also cubic so again each line will intersect it in three points. Further (0 : 0 : 1)
is a singularity of multiplicity 2 and so if two points on a line are determined (with
multiplicity) then (0 : 0 : 1) can never be the third point. Thus the same construction
as for elliptic curves gives that ¢ is a bijection.

Finally now parametrize X ~ (0 : 0 : 1) via (% : ¢* : 1). Note that (0 : 1 : 0)
is a flex of this curve and so use it as . Thus as for elliptic curves (by the same
calculations) we get

@(t2 AR 1) = (t2 =13 1) = ((—1)?: (—t)3 . 1)
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and for t; + to # 0 the z coordinate of (¢7:¢3: 1)@ (3 :¢3: 1) is

ty — 1] ? 22 taty \?
2 __ 12 — b T g —

and so the y coordinate is

2 3
ey 3 —t3 oty ) ) o tot
-2\ \t+t ! ty + 1

Now consider the change of variables u; = 1/t;. Considered in the u variables negation
remains usual negation and addition becomes usual addition. The point (0 : 0 : 1)
is now at infinity and the point (0 : 1:0) is uw = 0, so the parameter runs over k to
capture the points we are interested in. Thus Pic’X is isomorphic to k with usual
addition and negation and so

PicX=Z ok

Consider any divisor D of X. Restricting D to o~ !(y) & y x P*! we get a divisor
of P! and linearly equivalent divisors on X give linearly equivalent divisors on
P!, Thus define deg(D) = deg(D|,-1(,). Note that any prime divisor which is not
disjoint from o~!(y) has nonzero degree, so by adding and subtracting divisors we
get that degree is surjective on Z. Thus we have

deg : C1X — Z.

Consider now the kernel, CI°X, of the degree map. This is isomorphic to ClY since
any divisor of degree 0 on X is linearly equivalent to one which is not supported on
o~ 1(y), among such divisors linear equivalence in Y is the same as linear equivalence
in X, and any divisor of Y is linearly equivalent to one not supported at y.



