HOMEWORK 3 SOLUTIONS

MATH 818, FALL 2010

Sh, I.6.6: Let $\overline{X} \in \mathbb{P}^3$ be the projective closure of X. Let \widetilde{X} be any component of \overline{X} . Project away from where the z axis meets the plane at infinity. We know the projection map

$$\pi: X \to \mathbb{P}^2$$

is regular, and hence $\pi(\widetilde{X})$ is closed. By dimension $\pi(\widetilde{X})$ has no component of dimension 2 (if it did it would be onto and then I.6.3 Theorem 7 would give the contradiction).

Suppose $\pi(\widetilde{X})$ had a component of dimension 0, that is a point $P \in \mathbb{P}^2$ which has a neighbourhood $U \subset \mathbb{P}^2$ such that $\pi^{-1}(P) = \pi^{-1}(U)$. Let $V = U \times \mathbb{P}^1$ (where the \mathbb{P}^1 has coordinate z); then $\pi^{-1}(U) = \overline{X} \cap (V)$ consists only of points on the line parallel to the z axis containing (P, 0), which is a contradiction because X does not contain any lines parallel to the z axis, and is closed and pure dimension 1.

Thus $\pi(X)$ is pure codimension 1. Now restrict back to affine space and apply Theorem 3, I.6.1 to get that $Y = \pi(\widetilde{X}) \cap \mathbb{A}^2$ is a hypersurface and its maximal ideal is principal. Finally note that Y is exactly the closure of the projection of X parallel to the z-axis and that any polynomial which vanishes on Y is a polynomial in x, ywhich also vanishes on any point of X.

Sh, I.6.7: Write

$$f(x, y, z) = e_0(x, y)z^m + \dots + e_m(x, y)$$

Then

$$fg_0^m = h(x, y, z)g_0^{m-1}e_0 z^{m-n} + g_0^{m-1} z^{m-1}(e_1g_0 - e_0g_1) + g_0^{m-1}(\text{stuff of degree at most } m-2 \text{ in } z) = h(x, y, z)(g_0^{m-1}e_0 z^{m-n} + g_0^{m-2}(e_1g_0 - e_0g_1)) + g_0^{m-2} z^{m-2}(\text{a constant}) + g_0^{m-2}(\text{stuff of degree at most } m-3 \text{ in } z)$$

Continuing likewise get

$$f(x, y, z)g_0^m(x, y) = h(x, y, z)U(x, y, z) + v(x, y, z)$$

where v is of degree at most n-1 in z. But $f(x, y, z)g_0^m(x, y)$ is zero on X and so by the minimality of g, v depends only on x and y. Thus if g(x, y) is the generator of the ideal of Y (from the previous question), then g divides v.

Then $V(h,g) = V(\mathfrak{A}_X, g_0, g)$ defines a curve consisting of X along with finitely many lines parallel to the z axis defined by $g_0 = g = 0$.

Sh, I.6.8: Pick a point P_i on each line L_i in $V(g_0, g)$ which is not in X. Choose an element k of \mathfrak{A}_X which is nonzero on each P_i . This is possible, as we can certainly choose an element f_i of \mathfrak{A}_X which is nonzero on P_i and then some linear combination of the

 f_i will do. Then $X \subset V(h, g, k)$, and $V(h, g, k) \subset V(h, g) = X \cup \bigcup L_i$. But no P_i is in V(h, g, k) and V(h, g, k) is closed in $X \cup \bigcup L_i$ so V(g, h, k) = X.

- Sh, II.1.1: Take any $f \in \mathcal{O}_x$ then f is regular on some neighbourhood of x so $f \in k[U]$ for some U a neighbourhood of x. Now take $f \in \bigcup k[U]$; this says that f is regular on some neighbourhood of x and in particular then it is regular at x and so is in \mathcal{O}_x .
 - F, 7-2: Note that I don't care if you just blowup the singularity (and take the strict transform) or if you then project onto the x, z plane to get a plane curve back. The latter is what Fulton calls F' but we didn't discuss that and either is fine.
 - (a) Consider each example in turn
 - $Y X^2$: Substitute $y = x^2$ into y xz to get $x^2 xz = x(x z)$, and so the exceptional divisor is given by x = 0, y = 0, and F' = V(y = xz, x = z). To check that this is nonsingular calculate the Jacobian matrix

$$\begin{bmatrix} -z & -1 \\ 1 & 0 \\ -x & 1 \end{bmatrix}$$

and notice that this matrix has rank 2 for all values of x, y, z.

 $Y^{2} - X^{3} + X$: Substitute to get $x^{3} - x - x^{2}z^{2} = x(x^{2} - 1 - xz^{2})$, so $F' = V(y = xz, x^{2} = x^{2})$ $1 + xz^2$). The Jacobian matrix is

$$\begin{bmatrix} -z & 2x \\ 1 & 0 \\ -x & -2xz \end{bmatrix}$$

which has rank 2 on the curve since 2x = 0 does not satisfy the second equation.

 $Y^2 - X^3$: Following the same steps we have $x^3 - x^2 z^2 = x^2 (x - z^2)$ so $F' = V(y = z^2)$ $xz, x = z^2$) and

$$\begin{bmatrix} -z & 1\\ 1 & 0\\ -x & 2z \end{bmatrix}$$

$$Y^2 - X^3 - X^2$$
: $F' = V(y = xz, x + 1 = z^2)$ and
 $\begin{bmatrix} -z & 1 \\ 1 & 0 \\ -x & -2z \end{bmatrix}$

 $(X^2 + Y^2)^2 + 3X^2Y - Y^3:$ has rank 2. Substitute $(x^2 + x^2z^2)^2 + 3x^3z - x^3z^3 = x^3(x + 2xz^2 + xz^4 + 3z - z^3)$ so $F' = V(y = xz, x + 2xz^2 + xz^4 + 3z - z^3 = 0)$ which has Jacobian matrix

$$\begin{bmatrix} -z & 1+2z^2 \\ 1 & 0 \\ -x & 4xz + 4xz^3 + 3 - 3z^2 \end{bmatrix}$$

To check the rank of this note that if $1+2z^2 = 0$ and $4xz+4xz^3+3-3z^2 = 0$ then we do not get a point on the curve. Thus there are no points on the curve where the rank of the Jacobian is other than 2.

 $(X^2 + Y^2)^3 - 4X^2Y^2$: As in the previous part get $(x^2 + x^2z^2)^3 - 4x^4z^2 = x^4(x^2(1+z^2)^3 - 4z^2)$. So $F' = V(y = xz, x^2(1+z^2)^3 = 4z^2)$. The Jacobian matrix is

$$\begin{bmatrix} -z & 2x(1+z^2)^3 \\ 1 & 0 \\ -x & 6z(1+z^2)^2 - 8z \end{bmatrix}$$

This one finally is still singular at (0, 0, 0).

(b) One more time on $Y^2 - X^5$ we get $x^2z^2 - x^5 = x^2(z^2 - x^3)$ so $F' = V(y = xz, z^2 = x^3)$. The Jacobian is

$$\begin{bmatrix} -z & -3x^2 \\ 1 & 0 \\ -x & 2z \end{bmatrix}$$

This is singular at (0,0,0) and nowhere else, but let's blow up again. This time we are blowing up (0,0,0) in A^3 . Considering blowing up all of A^3 with coordinates (x, y, z) and with the two new blowup coordinates being (t, u) this gives the variety V(y = xt, z = xu). Now consider what happens to F'. Substituting we get 0 = xz - xt = x(z - t) and $x^2u^2 - x^3 = x^2(u^2 - x)$, so the exceptional divisor is V(x, y, z) and $F'' = V(z = t, u^2 = x, y = xt, z = xu)$ which has Jacobian

$$\begin{bmatrix} 0 & 0 & 1 & -1 & 0 \\ -1 & 0 & 0 & 0 & 2u \\ -t & 1 & 0 & -x & 0 \\ -u & 0 & 1 & 0 & -x \end{bmatrix}$$

which has rank 4 for all points on F'' and hence F'' is smooth. So for $Y^2 - X^{2n+1}$ we should expect to need to blow up n times.

Sh, II.4.4: ϕ is certainly rational. The inverse map is

$$(y_0: y_1: y_2: y_3: y_4) \mapsto (y_0: y_2: y_3)$$

and so ϕ is birational to $\overline{\phi(\mathbb{P}^2)}$. Moreover the blowup of \mathbb{P}^2 at (1:0:0) is the variety in $\mathbb{P}^2 \times \mathbb{P}^1$ given by $V(x'_1y'_2 = x'_2y'_1)$ where the coordinates of the \mathbb{P}^2 are x'_0, x'_1, x'_2 and the coordinates of the \mathbb{P}^1 are y'_1, y'_2 . If we label the coordinates of the image of ϕ by $(x'_0: y'_1: x'_1: x'_2: y'_2)$, then we get

$$x'_0 = x_0 x_1$$
 $x'_1 = x_1^2$ $x'_2 = x_1 x_2$ $y'_1 = x_0 x_2$ $y'_2 = x_2^2$

which satisfies $x'_1y'_2 = x'_2y'_1$. Furthermore if at least one of x'_0 or x'_2 is nonzero (call this set U) then $x_1 \neq 0$ so dividing by x_1 we see that ϕ is an isomorphism; on the other hand if $x'_0 = x'_2 = 0$ then we get the points $(0:0:0:x_0:1)$ and (0:1:0:0:0) in the image of ϕ all of which are in the closure of $\phi(U)$. Hence the inverse of ϕ is the blowup.

Sh, III.1.2: The function is $(x_1 - x_0)/x_0$. Consider $\operatorname{div}(x_1 - x_0)$. The only point of intersection is (1:1:0) and so by Bezout we know the intersection multiplicity is 2. So $\operatorname{div}(x_1 - x_0) = 2(1:1:0)$.

On the other hand the points of intersection of $x_0 = 0$ with the curve are (0:1:i) and (0:1:-i). Again by Bezout we know that each of these intersections has

multiplicity 1. So $\operatorname{div}(x_0) = (0:1:i) + (0:1:-i)$ and so $\operatorname{div}((x_1 - x_0)/x_0) = 2(1:1:0) - (0:1:i) - (0:1:-i)$.

Sh, III.1.5: Suppose k[X] is a UFD.Consider the proof of I.6.1 Theorem 3. The only special property of $k[\mathbb{A}^n]$ needed in this proof was that this ring is a UFD (we observed this fact when proving II.3.1 Theorem 1 which was the same argument applied to \mathcal{O}_x at a smooth point). Now one more time apply this argument this time using that k[X]is a UFD. Conclude that every pure codimension 1 subvariety is defined by a single equation and its ideal is principal. Hence, for C = V(F) we get that divF = C and thus every prime divisior and so every divisor is principal.

> Now suppose $\operatorname{Cl} X = 0$. Then in particular every prime divisor is principal, so for every irreducible codimension 1 subvariety C there is an $f \in k(X)$ such that $\operatorname{div}(f) = C$. But then $\operatorname{div}(f) > 0$ and so $f \in k[X]$. Now suppose k[X] does not have unique factorization; so there exists $f, g, h \in k[X]$ irreducible such that f|ghbut $f \ \langle g, f \ \langle h.$ So we have $\operatorname{div}(gh/f) = V(g) + V(h) - V(f)$ but we also have $gh/f \in k[X]$ so $\operatorname{div}(gh/f) > 0$ which is a contradiction.

Sh, III.1.12: X has one singularity: (0:0:1). Take any locally principal divisor D of X. By moving the support away from (0:0:1) we obtain a divisor D' with $D' \sim D$ and with $(0:0:1) \notin \text{Supp}D'$. But on the smooth part of X we have all the results on divisors on smooth curves. In particular we have a well defined notion of degree on divisor classes on $X \setminus (0:0:1)$. Suppose D_1 and D_2 were locally principal divisors of X and suppose D'_1 and D'_2 were divisors on $X \setminus (0:0:1)$ with

$$D_1 \sim D'_1 \quad D_2 \sim D'_2 \quad D_1 \sim D_2.$$

Then $D'_1 \sim D'_2$ on X so there exists $f \in k(X)$ such that $D'_1 = D'_2 + \operatorname{div}(f)$. But (0:0:1) is not in the support of either D'_1 or D'_2 so $f \in k(X \setminus (0:0:1))$ with the same divisor. Thus $\operatorname{deg}(D'_1) = \operatorname{deg}(D'_2)$ and so the degree is well defined on locally principal divisors of X.

Thus we have

 $\deg: \operatorname{Pic} X \to \mathbb{Z}$

and this map is onto. The kernel is $\operatorname{Pic}^{0} X$, the locally principal divisors of degree 0, and so $\operatorname{Pic} X \cong \mathbb{Z} \oplus \operatorname{Pic}^{0} X$. Now pick any $\alpha_{0} \in X \setminus (0:0:1)$. Consider

$$\phi: X \smallsetminus (0:0:1) \to \operatorname{Pic}^0 X$$
$$P \mapsto P - \alpha_0$$

Consider the constructions of addition and negation for elliptic curves. This curve is also cubic so again each line will intersect it in three points. Further (0:0:1)is a singularity of multiplicity 2 and so if two points on a line are determined (with multiplicity) then (0:0:1) can never be the third point. Thus the same construction as for elliptic curves gives that ϕ is a bijection.

Finally now parametrize $X \\ (0 : 0 : 1)$ via $(t^2 : t^3 : 1)$. Note that (0 : 1 : 0) is a flex of this curve and so use it as α_0 . Thus as for elliptic curves (by the same calculations) we get

$$\ominus(t^2:t^3:1) = (t^2:-t^3:1) = ((-t)^2:(-t)^3:1)$$

and for $t_1 + t_2 \neq 0$ the x coordinate of $(t_1^2 : t_1^3 : 1) \oplus (t_2^2 : t_2^3 : 1)$ is

$$\left(\frac{t_2^3 - t_1^3}{t_2^2 - t_1^2}\right)^2 - t_1^2 - t_2^2 = \left(\frac{t_2 t_1}{t_2 + t_1}\right)$$

and so the y coordinate is

$$-\left(t_1^3 + \frac{t_2^3 - t_1^3}{t_2^2 - t_1^2} \left(\left(\frac{t_2 t_1}{t_2 + t_1}\right)^2 - t_1^2\right)\right) = \left(\frac{t_2 t_1}{t_2 + t_1}\right)^3$$

Now consider the change of variables $u_i = 1/t_i$. Considered in the *u* variables negation remains usual negation and addition becomes usual addition. The point (0:0:1)is now at infinity and the point (0:1:0) is u = 0, so the parameter runs over *k* to capture the points we are interested in. Thus $\text{Pic}^0 X$ is isomorphic to *k* with usual addition and negation and so

$$\operatorname{Pic} X \cong \mathbb{Z} \oplus k$$

Sh, III.1.18: Consider any divisor D of X. Restricting D to $\sigma^{-1}(y) \cong y \times \mathbb{P}^{n-1}$ we get a divisor of \mathbb{P}^{n-1} and linearly equivalent divisors on X give linearly equivalent divisors on \mathbb{P}^{n-1} . Thus define $\deg(D) = \deg(D|_{\sigma^{-1}(y)})$. Note that any prime divisor which is not disjoint from $\sigma^{-1}(y)$ has nonzero degree, so by adding and subtracting divisors we get that degree is surjective on \mathbb{Z} . Thus we have

$$\deg: \operatorname{Cl} X \to \mathbb{Z}.$$

Consider now the kernel, $\operatorname{Cl}^0 X$, of the degree map. This is isomorphic to $\operatorname{Cl} Y$ since any divisor of degree 0 on X is linearly equivalent to one which is not supported on $\sigma^{-1}(y)$, among such divisors linear equivalence in Y is the same as linear equivalence in X, and any divisor of Y is linearly equivalent to one not supported at y.