HOMEWORK 3 SOLUTIONS

MATH 818, FALL 2010

Sh, I.6.6: Let $\bar{X} \in \mathbb{P}^{3}$ be the projective closure of X. Let \widetilde{X} be any component of \bar{X}. Project away from where the z axis meets the plane at infinity. We know the projection map

$$
\pi: \widetilde{X} \rightarrow \mathbb{P}^{2}
$$

is regular, and hence $\pi(\widetilde{X})$ is closed. By dimension $\pi(\widetilde{X})$ has no component of dimension 2 (if it did it would be onto and then I.6.3 Theorem 7 would give the contradiction).
Suppose $\pi(\widetilde{X})$ had a component of dimension 0 , that is a point $P \in \mathbb{P}^{2}$ which has a neighbourhood $U \subset \mathbb{P}^{2}$ such that $\pi^{-1}(P)=\pi^{-1}(U)$. Let $V=U \times \mathbb{P}^{1}$ (where the \mathbb{P}^{1} has coordinate z); then $\pi^{-1}(U)=\bar{X} \cap(V)$ consists only of points on the line parallel to the z axis containing $(P, 0)$, which is a contradiction because X does not contain any lines parallel to the z axis, and is closed and pure dimension 1 .

Thus $\pi(\widetilde{X})$ is pure codimension 1 . Now restrict back to affine space and apply Theorem 3, I.6.1 to get that $Y=\pi(\widetilde{X}) \cap \mathbb{A}^{2}$ is a hypersurface and its maximal ideal is principal. Finally note that Y is exactly the closure of the projection of X parallel to the z-axis and that any polynomial which vanishes on Y is a polynomial in x, y which also vanishes on any point of X.
Sh, I.6.7: Write

$$
f(x, y, z)=e_{0}(x, y) z^{m}+\cdots+e_{m}(x, y)
$$

Then

$$
\begin{aligned}
f g_{0}^{m}= & h(x, y, z) g_{0}^{m-1} e_{0} z^{m-n}+g_{0}^{m-1} z^{m-1}\left(e_{1} g_{0}-e_{0} g_{1}\right) \\
& +g_{0}^{m-1}(\text { stuff of degree at most } m-2 \text { in } z) \\
= & h(x, y, z)\left(g_{0}^{m-1} e_{0} z^{m-n}+g_{0}^{m-2}\left(e_{1} g_{0}-e_{0} g_{1}\right)\right)+g_{0}^{m-2} z^{m-2}(\text { a constant }) \\
& +g_{0}^{m-2}(\text { stuff of degree at most } m-3 \text { in } z)
\end{aligned}
$$

Continuing likewise get

$$
f(x, y, z) g_{0}^{m}(x, y)=h(x, y, z) U(x, y, z)+v(x, y, z)
$$

where v is of degree at most $n-1$ in z. But $f(x, y, z) g_{0}^{m}(x, y)$ is zero on X and so by the minimality of g, v depends only on x and y. Thus if $g(x, y)$ is the generator of the ideal of Y (from the previous question), then g divides v.

Then $V(h, g)=V\left(\mathfrak{A}_{X}, g_{0}, g\right)$ defines a curve consisting of X along with finitely many lines parallel to the z axis defined by $g_{0}=g=0$.
Sh, I.6.8: Pick a point P_{i} on each line L_{i} in $V\left(g_{0}, g\right)$ which is not in X. Choose an element k of \mathfrak{A}_{X} which is nonzero on each P_{i}. This is possible, as we can certainly choose an element f_{i} of \mathfrak{A}_{X} which is nonzero on P_{i} and then some linear combinationo of the
f_{i} will do. Then $X \subset V(h, g, k)$, and $V(h, g, k) \subset V(h, g)=X \cup \bigcup L_{i}$. But no P_{i} is in $V(h, g, k)$ and $V(h, g, k)$ is closed in $X \cup \bigcup L_{i}$ so $V(g, h, k)=X$.
Sh, II.1.1: Take any $f \in \mathcal{O}_{x}$ then f is regular on some neighbourhood of x so $f \in k[U]$ for some U a neighbourhood of x. Now take $f \in \bigcup k[U]$; this says that f is regular on some neighbourhood of x and in particular then it is regular at x and so is in \mathcal{O}_{x}.
F, 7-2: Note that I don't care if you just blowup the singularity (and take the strict transform) or if you then project onto the x, z plane to get a plane curve back. The latter is what Fulton calls F^{\prime} but we didn't discuss that and either is fine.
(a) Consider each example in turn
$Y-X^{2}$: Substitute $y=x^{2}$ into $y-x z$ to get $x^{2}-x z=x(x-z)$, and so the exceptional divisor is given by $x=0, y=0$, and $F^{\prime}=V(y=x z, x=z)$. To check that this is nonsingular calculate the Jacobian matrix

$$
\left[\begin{array}{cc}
-z & -1 \\
1 & 0 \\
-x & 1
\end{array}\right]
$$

and notice that this matrix has rank 2 for all values of x, y, z.
$Y^{2}-X^{3}+X:$ Substitute to get $x^{3}-x-x^{2} z^{2}=x\left(x^{2}-1-x z^{2}\right)$, so $F^{\prime}=V\left(y=x z, x^{2}=\right.$ $\left.1+x z^{2}\right)$. The Jacobian matrix is

$$
\left[\begin{array}{cc}
-z & 2 x \\
1 & 0 \\
-x & -2 x z
\end{array}\right]
$$

which has rank 2 on the curve since $2 x=0$ does not satisfy the second equation.
$Y^{2}-X^{3}$: Following the same steps we have $x^{3}-x^{2} z^{2}=x^{2}\left(x-z^{2}\right)$ so $F^{\prime}=V(y=$ $x z, x=z^{2}$) and

$$
\left[\begin{array}{cc}
-z & 1 \\
1 & 0 \\
-x & 2 z
\end{array}\right]
$$

has rank 2.
$Y^{2}-X^{3}-X^{2}: F^{\prime}=V\left(y=x z, x+1=z^{2}\right)$ and

$$
\left[\begin{array}{cc}
-z & 1 \\
1 & 0 \\
-x & -2 z
\end{array}\right]
$$

has rank 2.
$\left(X^{2}+Y^{2}\right)^{2}+3 X^{2} Y-Y^{3}:$ Substitute $\left(x^{2}+x^{2} z^{2}\right)^{2}+3 x^{3} z-x^{3} z^{3}=x^{3}\left(x+2 x z^{2}+x z^{4}+3 z-z^{3}\right)$ so $F^{\prime}=V\left(y=x z, x+2 x z^{2}+x z^{4}+3 z-z^{3}=0\right)$ which has Jacobian matrix

$$
\left[\begin{array}{cc}
-z & 1+2 z^{2} \\
1 & 0 \\
-x & 4 x z+4 x z^{3}+3-3 z^{2}
\end{array}\right]
$$

To check the rank of this note that if $1+2 z^{2}=0$ and $4 x z+4 x z^{3}+3-3 z^{2}=0$ then we do not get a point on the curve. Thus there are no points on the curve where the rank of the Jacobian is other than 2.
$\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2}:$ As in the previous part get $\left(x^{2}+x^{2} z^{2}\right)^{3}-4 x^{4} z^{2}=x^{4}\left(x^{2}\left(1+z^{2}\right)^{3}-4 z^{2}\right)$. So $F^{\prime}=V\left(y=x z, x^{2}\left(1+z^{2}\right)^{3}=4 z^{2}\right)$. The Jacobian matrix is

$$
\left[\begin{array}{cc}
-z & 2 x\left(1+z^{2}\right)^{3} \\
1 & 0 \\
-x & 6 z\left(1+z^{2}\right)^{2}-8 z
\end{array}\right]
$$

This one finally is still singular at $(0,0,0)$.
(b) One more time on $Y^{2}-X^{5}$ we get $x^{2} z^{2}-x^{5}=x^{2}\left(z^{2}-x^{3}\right)$ so $F^{\prime}=V(y=$ $\left.x z, z^{2}=x^{3}\right)$. The Jacobian is

$$
\left[\begin{array}{cc}
-z & -3 x^{2} \\
1 & 0 \\
-x & 2 z
\end{array}\right]
$$

This is singular at $(0,0,0)$ and nowhere else, but let's blow up again. This time we are blowing up $(0,0,0)$ in A^{3}. Considering blowing up all of A^{3} with coordinates (x, y, z) and with the two new blowup coordinates being (t, u) this gives the variety $V(y=x t, z=x u)$. Now consider what happens to F^{\prime}. Substituting we get $0=x z-x t=x(z-t)$ and $x^{2} u^{2}-x^{3}=x^{2}\left(u^{2}-x\right)$, so the exceptional divisor is $V(x, y, z)$ and $F^{\prime \prime}=V\left(z=t, u^{2}=x, y=x t, z=x u\right)$ which has Jacobian

$$
\left[\begin{array}{ccccc}
0 & 0 & 1 & -1 & 0 \\
-1 & 0 & 0 & 0 & 2 u \\
-t & 1 & 0 & -x & 0 \\
-u & 0 & 1 & 0 & -x
\end{array}\right]
$$

which has rank 4 for all points on $F^{\prime \prime}$ and hence $F^{\prime \prime}$ is smooth. So for $Y^{2}-X^{2 n+1}$ we should expect to need to blow up n times.
Sh, II.4.4: ϕ is certainly rational. The inverse map is

$$
\left(y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right) \mapsto\left(y_{0}: y_{2}: y_{3}\right)
$$

and so ϕ is birational to $\overline{\phi\left(\mathbb{P}^{2}\right)}$. Moreover the blowup of \mathbb{P}^{2} at $(1: 0: 0)$ is the variety in $\mathbb{P}^{2} \times \mathbb{P}^{1}$ given by $V\left(x_{1}^{\prime} y_{2}^{\prime}=x_{2}^{\prime} y_{1}^{\prime}\right)$ where the coordinates of the \mathbb{P}^{2} are $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ and the coordinates of the \mathbb{P}^{1} are $y_{1}^{\prime}, y_{2}^{\prime}$. If we label the coordinates of the image of ϕ by $\left(x_{0}^{\prime}: y_{1}^{\prime}: x_{1}^{\prime}: x_{2}^{\prime}: y_{2}^{\prime}\right)$, then we get

$$
x_{0}^{\prime}=x_{0} x_{1} \quad x_{1}^{\prime}=x_{1}^{2} \quad x_{2}^{\prime}=x_{1} x_{2} \quad y_{1}^{\prime}=x_{0} x_{2} \quad y_{2}^{\prime}=x_{2}^{2}
$$

which satisfies $x_{1}^{\prime} y_{2}^{\prime}=x_{2}^{\prime} y_{1}^{\prime}$. Furthermore if at least one of x_{0}^{\prime} or x_{2}^{\prime} is nonzero (call this set $U)$ then $x_{1} \neq 0$ so dividing by x_{1} we see that ϕ is an isomorphism; on the other hand if $x_{0}^{\prime}=x_{2}^{\prime}=0$ then we get the points $\left(0: 0: 0: x_{0}: 1\right)$ and $(0: 1: 0: 0: 0)$ in the image of ϕ all of which are in the closure of $\phi(U)$. Hence the inverse of ϕ is the blowup.
Sh, III.1.2: The function is $\left(x_{1}-x_{0}\right) / x_{0}$. Consider $\operatorname{div}\left(x_{1}-x_{0}\right)$. The only point of intersection is $(1: 1: 0)$ and so by Bezout we know the intersection multiplicity is 2 . So $\operatorname{div}\left(x_{1}-\right.$ $\left.x_{0}\right)=2(1: 1: 0)$.

On the other hand the points of intersection of $x_{0}=0$ with the curve are $(0: 1: i)$ and ($0: 1:-i$). Again by Bezout we know that each of these intersections has
multiplicity 1. So $\operatorname{div}\left(x_{0}\right)=(0: 1: i)+(0: 1:-i)$ and so $\operatorname{div}\left(\left(x_{1}-x_{0}\right) / x_{0}\right)=2(1:$ $1: 0)-(0: 1: i)-(0: 1:-i)$.
Sh, III.1.5: Suppose $k[X]$ is a UFD.Consider the proof of I.6.1 Theorem 3. The only special property of $k\left[\mathbb{A}^{n}\right]$ needed in this proof was that this ring is a UFD (we observed this fact when proving II.3.1 Theorem 1 which was the same argument applied to \mathcal{O}_{x} at a smooth point). Now one more time apply this argument this time using that $k[X]$ is a UFD. Conclude that every pure codimension 1 subvariety is defined by a single equation and its ideal is principal. Hence, for $C=V(F)$ we get that $\operatorname{div} F=C$ and thus every prime divisior and so every divisor is principal.

Now suppose $\mathrm{Cl} X=0$. Then in particular every prime divisor is principal, so for every irreducible codimension 1 subvariety C there is an $f \in k(X)$ such that $\operatorname{div}(f)=C$. But then $\operatorname{div}(f)>0$ and so $f \in k[X]$. Now suppose $k[X]$ does not have unique factorization; so there exists $f, g, h \in k[X]$ irreducible such that $f \mid g h$ but $f \Lambda g, f$ h . So we have $\operatorname{div}(g h / f)=V(g)+V(h)-V(f)$ but we also have $g h / f \in k[X]$ so $\operatorname{div}(g h / f)>0$ which is a contradiction.
Sh, III.1.12: X has one singularity: ($0: 0: 1$). Take any locally principal divisor D of X. By moving the support away from ($0: 0: 1$) we obtain a divisor D^{\prime} with $D^{\prime} \sim D$ and with $(0: 0: 1) \notin \operatorname{Supp} D^{\prime}$. But on the smooth part of X we have all the results on divisors on smooth curves. In particular we have a well defined notion of degree on divisor classes on $X \backslash(0: 0: 1)$. Suppose D_{1} and D_{2} were locally principal divisors of X and suppose D_{1}^{\prime} and D_{2}^{\prime} were divisors on $X \backslash(0: 0: 1)$ with

$$
D_{1} \sim D_{1}^{\prime} \quad D_{2} \sim D_{2}^{\prime} \quad D_{1} \sim D_{2}
$$

Then $D_{1}^{\prime} \sim D_{2}^{\prime}$ on X so there exists $f \in k(X)$ such that $D_{1}^{\prime}=D_{2}^{\prime}+\operatorname{div}(f)$. But $(0: 0: 1)$ is not in the support of either D_{1}^{\prime} or D_{2}^{\prime} so $f \in k(X \backslash(0: 0: 1))$ with the same divisor. Thus $\operatorname{deg}\left(D_{1}^{\prime}\right)=\operatorname{deg}\left(D_{2}^{\prime}\right)$ and so the degree is well defined on locally principal divisors of X.

Thus we have

$$
\operatorname{deg}: \operatorname{Pic} X \rightarrow \mathbb{Z}
$$

and this map is onto. The kernel is $\operatorname{Pic}^{0} X$, the locally principal divisors of degree 0 , and so $\operatorname{Pic} X \cong \mathbb{Z} \oplus \operatorname{Pic}^{0} X$. Now pick any $\alpha_{0} \in X \backslash(0: 0: 1)$. Consider

$$
\begin{aligned}
\phi: X \backslash(0: 0: 1) & \rightarrow \operatorname{Pic}^{0} X \\
P & \mapsto P-\alpha_{0}
\end{aligned}
$$

Consider the constructions of addition and negation for elliptic curves. This curve is also cubic so again each line will intersect it in three points. Further $(0: 0: 1)$ is a singularity of multiplicity 2 and so if two points on a line are determined (with multiplicity) then ($0: 0: 1$) can never be the third point. Thus the same construction as for elliptic curves gives that ϕ is a bijection.

Finally now parametrize $X \backslash(0: 0: 1)$ via $\left(t^{2}: t^{3}: 1\right)$. Note that $(0: 1: 0)$ is a flex of this curve and so use it as α_{0}. Thus as for elliptic curves (by the same calculations) we get

$$
\ominus\left(t^{2}: t^{3}: 1\right)=\left(t^{2}:-t^{3}: 1\right)=\left((-t)^{2}:(-t)^{3}: 1\right)
$$

and for $t_{1}+t_{2} \neq 0$ the x coordinate of $\left(t_{1}^{2}: t_{1}^{3}: 1\right) \oplus\left(t_{2}^{2}: t_{2}^{3}: 1\right)$ is

$$
\left(\frac{t_{2}^{3}-t_{1}^{3}}{t_{2}^{2}-t_{1}^{2}}\right)^{2}-t_{1}^{2}-t_{2}^{2}=\left(\frac{t_{2} t_{1}}{t_{2}+t_{1}}\right)^{2}
$$

and so the y coordinate is

$$
-\left(t_{1}^{3}+\frac{t_{2}^{3}-t_{1}^{3}}{t_{2}^{2}-t_{1}^{2}}\left(\left(\frac{t_{2} t_{1}}{t_{2}+t_{1}}\right)^{2}-t_{1}^{2}\right)\right)=\left(\frac{t_{2} t_{1}}{t_{2}+t_{1}}\right)^{3}
$$

Now consider the change of variables $u_{i}=1 / t_{i}$. Considered in the u variables negation remains usual negation and addition becomes usual addition. The point ($0: 0: 1$) is now at infinity and the point $(0: 1: 0)$ is $u=0$, so the parameter runs over k to capture the points we are interested in. Thus $\operatorname{Pic}^{0} X$ is isomorphic to k with usual addition and negation and so

$$
\operatorname{Pic} X \cong \mathbb{Z} \oplus k
$$

Sh, III.1.18: Consider any divisor D of X. Restricting D to $\sigma^{-1}(y) \cong y \times \mathbb{P}^{n-1}$ we get a divisor of \mathbb{P}^{n-1} and linearly equivalent divisors on X give linearly equivalent divisors on \mathbb{P}^{n-1}. Thus define $\operatorname{deg}(D)=\operatorname{deg}\left(\left.D\right|_{\sigma^{-1}(y)}\right)$. Note that any prime divisor which is not disjoint from $\sigma^{-1}(y)$ has nonzero degree, so by adding and subtracting divisors we get that degree is surjective on \mathbb{Z}. Thus we have

$$
\operatorname{deg}: \operatorname{Cl} X \rightarrow \mathbb{Z}
$$

Consider now the kernel, $\mathrm{Cl}^{0} X$, of the degree map. This is isomorphic to $\mathrm{Cl} Y$ since any divisor of degree 0 on X is linearly equivalent to one which is not supported on $\sigma^{-1}(y)$, among such divisors linear equivalence in Y is the same as linear equivalence in X, and any divisor of Y is linearly equivalent to one not supported at y.

