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Sh, I.6.6: Let X ∈ P3 be the projective closure of X. Let X̃ be any component of X. Project
away from where the z axis meets the plane at infinity. We know the projection map

π : X̃ → P2

is regular, and hence π(X̃) is closed. By dimension π(X̃) has no component of
dimension 2 (if it did it would be onto and then I.6.3 Theorem 7 would give the
contradiction).

Suppose π(X̃) had a component of dimension 0, that is a point P ∈ P2 which has
a neighbourhood U ⊂ P2 such that π−1(P ) = π−1(U). Let V = U ×P1 (where the P1

has coordinate z); then π−1(U) = X ∩ (V ) consists only of points on the line parallel
to the z axis containing (P, 0), which is a contradiction because X does not contain
any lines parallel to the z axis, and is closed and pure dimension 1.

Thus π(X̃) is pure codimension 1. Now restrict back to affine space and apply

Theorem 3, I.6.1 to get that Y = π(X̃) ∩A2 is a hypersurface and its maximal ideal
is principal. Finally note that Y is exactly the closure of the projection of X parallel
to the z-axis and that any polynomial which vanishes on Y is a polynomial in x, y
which also vanishes on any point of X.

Sh, I.6.7: Write

f(x, y, z) = e0(x, y)zm + · · ·+ em(x, y)

Then

fgm0 = h(x, y, z)gm−10 e0z
m−n + gm−10 zm−1(e1g0 − e0g1)

+ gm−10 (stuff of degree at most m− 2 in z)

= h(x, y, z)(gm−10 e0z
m−n + gm−20 (e1g0 − e0g1)) + gm−20 zm−2(a constant)

+ gm−20 (stuff of degree at most m− 3 in z)

Continuing likewise get

f(x, y, z)gm0 (x, y) = h(x, y, z)U(x, y, z) + v(x, y, z)

where v is of degree at most n − 1 in z. But f(x, y, z)gm0 (x, y) is zero on X and so
by the minimality of g, v depends only on x and y. Thus if g(x, y) is the generator
of the ideal of Y (from the previous question), then g divides v.

Then V (h, g) = V (AX , g0, g) defines a curve consisting of X along with finitely
many lines parallel to the z axis defined by g0 = g = 0.

Sh, I.6.8: Pick a point Pi on each line Li in V (g0, g) which is not in X. Choose an element k
of AX which is nonzero on each Pi. This is possible, as we can certainly choose an
element fi of AX which is nonzero on Pi and then some linear combinationo of the
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fi will do. Then X ⊂ V (h, g, k), and V (h, g, k) ⊂ V (h, g) = X ∪
⋃
Li. But no Pi is

in V (h, g, k) and V (h, g, k) is closed in X ∪
⋃
Li so V (g, h, k) = X.

Sh, II.1.1: Take any f ∈ Ox then f is regular on some neighbourhood of x so f ∈ k[U ] for some
U a neighbourhood of x. Now take f ∈

⋃
k[U ]; this says that f is regular on some

neighbourhood of x and in particular then it is regular at x and so is in Ox.
F, 7-2: Note that I don’t care if you just blowup the singularity (and take the strict transform)

or if you then project onto the x, z plane to get a plane curve back. The latter is what
Fulton calls F ′ but we didn’t discuss that and either is fine.
(a) Consider each example in turn
Y −X2: Substitute y = x2 into y − xz to get x2 − xz = x(x − z), and so the

exceptional divisor is given by x = 0, y = 0, and F ′ = V (y = xz, x = z).
To check that this is nonsingular calculate the Jacobian matrix−z −1

1 0
−x 1


and notice that this matrix has rank 2 for all values of x, y, z.

Y 2 −X3 +X: Substitute to get x3− x− x2z2 = x(x2− 1− xz2), so F ′ = V (y = xz, x2 =
1 + xz2). The Jacobian matrix is−z 2x

1 0
−x −2xz


which has rank 2 on the curve since 2x = 0 does not satisfy the second
equation.

Y 2 −X3: Following the same steps we have x3 − x2z2 = x2(x − z2) so F ′ = V (y =
xz, x = z2) and −z 1

1 0
−x 2z


has rank 2.

Y 2 −X3 −X2: F ′ = V (y = xz, x+ 1 = z2) and−z 1
1 0
−x −2z


has rank 2.

(X2 + Y 2)2 + 3X2Y − Y 3: Substitute (x2 + x2z2)2 + 3x3z − x3z3 = x3(x + 2xz2 + xz4 + 3z − z3) so
F ′ = V (y = xz, x+ 2xz2 + xz4 + 3z − z3 = 0) which has Jacobian matrix−z 1 + 2z2

1 0
−x 4xz + 4xz3 + 3− 3z2


To check the rank of this note that if 1+2z2 = 0 and 4xz+4xz3+3−3z2 = 0
then we do not get a point on the curve. Thus there are no points on the
curve where the rank of the Jacobian is other than 2.
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(X2 + Y 2)3 − 4X2Y 2: As in the previous part get (x2 + x2z2)3 − 4x4z2 = x4(x2(1 + z2)3 − 4z2).
So F ′ = V (y = xz, x2(1 + z2)3 = 4z2). The Jacobian matrix is−z 2x(1 + z2)3

1 0
−x 6z(1 + z2)2 − 8z


This one finally is still singular at (0, 0, 0).

(b) One more time on Y 2 − X5 we get x2z2 − x5 = x2(z2 − x3) so F ′ = V (y =
xz, z2 = x3). The Jacobian is−z −3x2

1 0
−x 2z


This is singular at (0, 0, 0) and nowhere else, but let’s blow up again. This time
we are blowing up (0, 0, 0) in A3. Considering blowing up all of A3 with coordi-
nates (x, y, z) and with the two new blowup coordinates being (t, u) this gives the
variety V (y = xt, z = xu). Now consider what happens to F ′. Substituting we
get 0 = xz−xt = x(z− t) and x2u2−x3 = x2(u2−x), so the exceptional divisor
is V (x, y, z) and F ′′ = V (z = t, u2 = x, y = xt, z = xu) which has Jacobian

0 0 1 −1 0
−1 0 0 0 2u
−t 1 0 −x 0
−u 0 1 0 −x


which has rank 4 for all points on F ′′ and hence F ′′ is smooth. So for Y 2−X2n+1

we should expect to need to blow up n times.
Sh, II.4.4: φ is certainly rational. The inverse map is

(y0 : y1 : y2 : y3 : y4) 7→ (y0 : y2 : y3)

and so φ is birational to φ(P2). Moreover the blowup of P2 at (1 : 0 : 0) is the variety
in P2×P1 given by V (x′1y

′
2 = x′2y

′
1) where the coordinates of the P2 are x′0, x

′
1, x
′
2 and

the coordinates of the P1 are y′1, y
′
2. If we label the coordinates of the image of φ by

(x′0 : y′1 : x′1 : x′2 : y′2), then we get

x′0 = x0x1 x′1 = x21 x′2 = x1x2 y′1 = x0x2 y′2 = x22

which satisfies x′1y
′
2 = x′2y

′
1. Furthermore if at least one of x′0 or x′2 is nonzero (call this

set U) then x1 6= 0 so dividing by x1 we see that φ is an isomorphism; on the other
hand if x′0 = x′2 = 0 then we get the points (0 : 0 : 0 : x0 : 1) and (0 : 1 : 0 : 0 : 0) in
the image of φ all of which are in the closure of φ(U). Hence the inverse of φ is the
blowup.

Sh, III.1.2: The function is (x1 − x0)/x0. Consider div(x1 − x0). The only point of intersection
is (1 : 1 : 0) and so by Bezout we know the intersection multiplicity is 2. So div(x1−
x0) = 2(1 : 1 : 0).

On the other hand the points of intersection of x0 = 0 with the curve are (0 : 1 : i)
and (0 : 1 : −i). Again by Bezout we know that each of these intersections has
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multiplicity 1. So div(x0) = (0 : 1 : i) + (0 : 1 : −i) and so div((x1 − x0)/x0) = 2(1 :
1 : 0)− (0 : 1 : i)− (0 : 1 : −i).

Sh, III.1.5: Suppose k[X] is a UFD.Consider the proof of I.6.1 Theorem 3. The only special
property of k[An] needed in this proof was that this ring is a UFD (we observed this
fact when proving II.3.1 Theorem 1 which was the same argument applied to Ox at
a smooth point). Now one more time apply this argument this time using that k[X]
is a UFD. Conclude that every pure codimension 1 subvariety is defined by a single
equation and its ideal is principal. Hence, for C = V (F ) we get that divF = C and
thus every prime divisior and so every divisor is principal.

Now suppose ClX = 0. Then in particular every prime divisor is principal, so
for every irreducible codimension 1 subvariety C there is an f ∈ k(X) such that
div(f) = C. But then div(f) > 0 and so f ∈ k[X]. Now suppose k[X] does not
have unique factorization; so there exists f, g, h ∈ k[X] irreducible such that f |gh
but f 6 |g, f 6 |h. So we have div(gh/f) = V (g) + V (h) − V (f) but we also have
gh/f ∈ k[X] so div(gh/f) > 0 which is a contradiction.

Sh, III.1.12: X has one singularity: (0 : 0 : 1). Take any locally principal divisor D of X. By
moving the support away from (0 : 0 : 1) we obtain a divisor D′ with D′ ∼ D and
with (0 : 0 : 1) 6∈ SuppD′. But on the smooth part of X we have all the results on
divisors on smooth curves. In particular we have a well defined notion of degree on
divisor classes on X r (0 : 0 : 1). Suppose D1 and D2 were locally principal divisors
of X and suppose D′1 and D′2 were divisors on X r (0 : 0 : 1) with

D1 ∼ D′1 D2 ∼ D′2 D1 ∼ D2.

Then D′1 ∼ D′2 on X so there exists f ∈ k(X) such that D′1 = D′2 + div(f). But
(0 : 0 : 1) is not in the support of either D′1 or D′2 so f ∈ k(X r (0 : 0 : 1)) with the
same divisor. Thus deg(D′1) = deg(D′2) and so the degree is well defined on locally
principal divisors of X.

Thus we have

deg : PicX → Z

and this map is onto. The kernel is Pic0X, the locally principal divisors of degree 0,
and so PicX ∼= Z⊕ Pic0X. Now pick any α0 ∈ X r (0 : 0 : 1). Consider

φ : X r (0 : 0 : 1)→ Pic0X

P 7→ P − α0

Consider the constructions of addition and negation for elliptic curves. This curve
is also cubic so again each line will intersect it in three points. Further (0 : 0 : 1)
is a singularity of multiplicity 2 and so if two points on a line are determined (with
multiplicity) then (0 : 0 : 1) can never be the third point. Thus the same construction
as for elliptic curves gives that φ is a bijection.

Finally now parametrize X r (0 : 0 : 1) via (t2 : t3 : 1). Note that (0 : 1 : 0)
is a flex of this curve and so use it as α0. Thus as for elliptic curves (by the same
calculations) we get

	(t2 : t3 : 1) = (t2 : −t3 : 1) = ((−t)2 : (−t)3 : 1)
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and for t1 + t2 6= 0 the x coordinate of (t21 : t31 : 1)⊕ (t22 : t32 : 1) is(
t32 − t31
t22 − t21

)2

− t21 − t22 =

(
t2t1
t2 + t1

)2

and so the y coordinate is

−

(
t31 +

t32 − t31
t22 − t21

((
t2t1
t2 + t1

)2

− t21

))
=

(
t2t1
t2 + t1

)3

Now consider the change of variables ui = 1/ti. Considered in the u variables negation
remains usual negation and addition becomes usual addition. The point (0 : 0 : 1)
is now at infinity and the point (0 : 1 : 0) is u = 0, so the parameter runs over k to
capture the points we are interested in. Thus Pic0X is isomorphic to k with usual
addition and negation and so

PicX ∼= Z⊕ k
Sh, III.1.18: Consider any divisor D of X. Restricting D to σ−1(y) ∼= y × Pn−1 we get a divisor

of Pn−1 and linearly equivalent divisors on X give linearly equivalent divisors on
Pn−1. Thus define deg(D) = deg(D|σ−1(y)). Note that any prime divisor which is not
disjoint from σ−1(y) has nonzero degree, so by adding and subtracting divisors we
get that degree is surjective on Z. Thus we have

deg : ClX → Z.
Consider now the kernel, Cl0X, of the degree map. This is isomorphic to ClY since
any divisor of degree 0 on X is linearly equivalent to one which is not supported on
σ−1(y), among such divisors linear equivalence in Y is the same as linear equivalence
in X, and any divisor of Y is linearly equivalent to one not supported at y.
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