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Comparison: The proofs have some similarities and some differences so both answers are possible.
Here are a few comments:

Both proofs are fundamentally about intersection numbers; Fulton has spent some
time developing the theory of intersection numbers for curves while for Shafarevich
they are a new definition, but Shafarevich defines them in terms of the degree of
a divisor (the theory of which has been previously developed), whereas only in a
later chapter does the connection with divisors become clear in Fulton. Whether this
aspect of the proofs all and all is more similar or more different depends on the scale
we view it at.

Fulton reduces to the affine case and does fundamentally affine calculations (with
some exact sequences of vector spaces of homogeneous polynomials). Shafarevich does
his main calculations locally on the tangent spaces. First note that the difference
between calculations on tangent spaces and on local rings really is a difference of
set up more than a fundamental difference. Fulton has already developed a local
theory of intersection numbers (the “Chinese remainder-type theorem” which came
up again and again is the most striking example as it tells us how to glue the local
properties into a global affine statement), so again how much this difference of affine
vs. local calculations is a minor difference of language or a fundamental difference
really depends on the scale at which we’re viewing the proof.

Shafarevich proves a more general result intersecting a curve in any dimension with
a hypersurface while Fulton only works in dimension two, that is only intersects pairs
of curves. This is a consequence of the scope of Fulton’s book. Finally Shafarevich
uses properties of divisors to reduce to intersections of curves with linear hypersur-
faces. This is in some sense analogous to part of the exactness of Fulton’s sequences,
but I think it is fair to call this a fundamental difference between the proofs.

F, 8-10: Put C is Weierstrass form (as in question 8-2). If r = 0 we get k and there’s nothing
else to say. Suppose r > 0. Calculate (z)0. Z = 0 intersects C only at the point at
infinity, with multiplicity 3. X = 0 intersects C at (0 : 0 : 1) with multiplicity 2 and
at (0 : 1 : 0) with multiplicity 1 and so (z)0 = 2(0 : 1 : 0).

Suppose f ∈ L(r(z)0). Then 2r(0 : 1 : 0) + div(f) > 0. Dehomogenize f with
z 6= 0 giving f(x, y) = G/H, G,H ∈ k[x, y]. But f(x, y) has no poles (since its only
possible pole was the one we removed by dehomogenizing). Thus f ∈ k[x, y].

Now calculate dimensions. First note that using the fact that C is in Weierstrass
form we can represent f so uniquely with degree at most 1 in y by cacncelling off
higher powers of y. So we just need to check at which value of r each monomial
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appears. Let M = xayb. Let α, β, γ be the three roots when Y = 0, Z = 1. Then

div(M) = a(0 : 1 : 0) + 2a(0 : 0 : 1) + b(α : 0 : 1) + b(β : 0 : 1) + b(γ : 0 : 1)− 3(a+ b)(0 : 1 : 0)

= 2a(0 : 0 : 1) + b(α : 0 : 1) + b(β : 0 : 1) + b(γ : 0 : 1)− (2a+ 3b)(0 : 1 : 0)

So
`(r(z)0) = |{(a, b) : a ∈ Z≥0, b ∈ {0, 1}, 2a+ 3b ≤ 2r}|

which we can prove is 2r by an easy induction.
F, 8-14(a,b): (a) The partial derivatives of X2Y 2 − Z2(X2 + Y 2) are

2XY 2 − 2XZ2

2Y X2 − 2Y Z2

− 2Z(X2 + Y 2)

setting these each equal to 0 we get

(X = 0 or Y = Z or Y = −Z) and

(Y = 0 or X = Z or X = −Z) and

(Z = 0 or X = iY or X = −iY )

The only solutions to these are (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0) which
are all on the curve. To find the multiplicities just set Z = 1, Y = 1, X = 1
respectively and take the lowest degree appearing. In each case this is 2. So
using the formula for genus we get

g =
3 · 2

2
− 3

(
2 · 1

2

)
= 0

(b) The partial derivatives of (X3 + Y 3)Z2 +X3Y 2 −X2Y 3 are

3X2Z2 + 3X2Y 2 − 2XY 3

3Y 2Z2 + 2X3Y − 3X2Y 2

− 2Z(X3 + Y 3)

setting these each equal to 0 we get

(X = 0 or 3XZ2 + 3XY 2 = 2Y 3) and

(Y = 0 or 3Y Z2 + 2X3 = 3X2Y ) and

(Z = 0 or X = ξY for ξ3 = −1)

First suppose Z = 0, then X = 0 or 3XY 2 = 2Y 3, so X = 0 or Y = 0 or
3X = 2Y . But then by the second equation Y = 0 or X = 0 or 2X = 3Y . The
only projective points satisfying these restrictions are (1 : 0 : 0) and (0 : 1 : 0).
Now suppose Z 6= 0. Note that (0 : 0 : 1) is a solution. Otherwise let X = 1,
Y = ξ. Then from the first equations

3Z2 = −2− 3ξ2 3ξZ2 = 3ξ − 2

Solving both equations for 3Z2 and equating we get

−2− 3ξ2 = 2ξ2 + 3
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so ξ2 = −1 which is a contradiction. Thus we have only three singularities.
To find the multiplicities again just set Z = 1, Y = 1, X = 1 and take the lowest
degree appearing. In each case we get 3, 2, 2. So using the formula for genus we
get

g =
4 · 3

2
− 3 · 2

2
− 2

(
2 · 1

2

)
= 6− 3− 2 = 1.

Sh, III.3.1: Suppose char(k) 6= 2, 3. Suppose P has order 2. That is, 2P = 0 = −0, so the
tangent line at P goes through 0. In Weierstrass form this means that the tangent
at P is vertical. Furthermore if the tangent is vertical then 2P = 0 so P has order 2.
Let the curve be defined by

y2 = x3 + ax+ b

So

2y = 3x2
dx

dy
+ a

dx

dy
Thus if the tangent is vertical then we must have y = 0. So the points of order 2 are
among the roots of x3 + ax+ b. By assumption the curve is smooth and so these are
distinct. Now suppose P = (x0, 0) is on the curve. Then 0 = (3x20 + a)dx

dy
(x0, 0) and

0 = x30 + ax0 + b. But since x3 + ax + b has no repeated roots, then it has no roots
in common with 3x2 + a, and so we must have dx

dy
(P ) = 0 giving that P is a point of

order 2.
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