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1 Constructions coming from cycle index poly-

nomial

Recall:

Definition. Let A be a permutation group on {1, 2, . . . , n}, Z(A; s1, s2, . . . , sn) =

1
|A|

∑
σ∈A

n∏
k=1

s
jk(σ)
k . Where jk(σ) = the number of cycles of length k in the dis-

joint cycle representation of σ.

Theorem 1. Let C be a combinatorial class, A a permutation group on
{1, 2, . . . , n}, let B = C{1,2,...,n}/A then B(x) = Z(A;C(x), C(x2), . . . , C(xn)).

From this we get some formulas for some constructions.

Proposition 2. Z(A; s1, s2, . . . , sn) =
∑

j1,j2,...,jn
1j1+2j2+···+njn=n

s
j1
1 s

j2
2 ···s

jn
n

j1!·1j1 ·j2!·2j2 ····jn!·njn
.

Proof. Given a cycle structure with jk cycles of size k, where k = 1, 2, . . . , n.
Let’s count how many permutations have this cycle structure. That is we
are trying to assign 1, 2, . . . , n to the cycle. Among all n! permutations of
1, 2, . . . , n, we overcount for all the ways of rearranging the cycles of a given
size, i.e. we need to divide by j1!j2! · · · jn!. And we also overcount by each
cyclic rotation within a given cycle, so we need to divide by 1j12j2 · · ·njn .
Then the n! cancels with the 1

|Sn| = 1
n!

giving the proposition.

Definition. Let B be a combinatorial class with B0 = ∅, define MSet(B)
the combinatorial class of multisets of elements of B to be MSet(B) =
∞∑
n=0

B{1,2,...,n}/Sn.
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Proposition 3. Let B be a combinatorial class with B0 = ∅, let A =

MSet(B). Then A(x) = exp(
∞∑
k=1

B(xk)
k

). (Sometimes called Pólya exponen-

tial)

Proof. We expand the right side.

exp(
∞∑
k=1

B(xk)

k
) =

∞∑
l=0

(
∞∑
k=1

B(xk)

k
)l · 1

l!

=
∞∑
l=0

1

l!

∑
(i1,...,il)

ordered list

(
B(xi1)

i1

B(xi2)

i2
· · · B(xil)

il
)

=
∞∑
l=0

1

l!

∑
j1,j2,...∑
ji=l

∞∏
i=1

B(xi)ji

∞∏
i=1

iji
· l!
∞∏
i=1

ji!

=
∞∑
n=0

∑
1j1+2j2+···+njn=n

B(x)j1B(x2)j2 · · ·B(xn)jn

1j12j2 · · ·njnj1!j2! · · · jn!

=
∞∑
n=0

Z(Sn;B(x), B(x2), . . . , B(xn))

Where jk=the number of ks in the ordered list (i1, . . . , il), k = 1, 2, . . .. Note
in the third equality from the bottom the double sum is over all ordered list
by length first. And in the second equality from the bottom the double sum
is over all ordered list by sum first.

Example. Rooted trees (without empty tree) (not plane)

T = Z ×MSet(T ) and T (x) = xexp(
∞∑
k=1

T (xk)
k

).

Proposition 4. Let Cn be the cyclic group on {1, 2, . . . , n}, then

Z(Cn; s1, s2, . . . , sn) = 1
n

∑
k|n
φ(k)s

n
k
k . Where φ is the Euler φ function

namely φ(d) := the number of integers in {1, 2, . . . , d} coprime to d.

Proof. The elements of Cn which takes 1 to m (m = 2, . . . , n, n + 1, here
when m = n+ 1, it means 1 goes to 1 since we don’t want g.c.d(n,m− 1) =
0) has g.c.d(n,m − 1) cycles each of length n

g.c.d(n,m−1)
. For any k|n, we

have φ(k) such m having g.c.d(n,m − 1) = n
k
. Thus Z(Cn; s1, s2, . . . , sn) =

1
n

∑
k|n
φ(k)s

n
k
k .
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Example. Take n = 6, m = 3,

1 2 3 4 5 6

we have g.c.d(6, 2) = 2 cycles of length 6
2

= 3. And there are φ(3) = 2 having
g.c.d(6,m− 1) = 2, i.e m = 3 or m = 5.

Definition. Let B be a combinatorial class with B0 = ∅, define DCyc(B)
be the combinatorial class of directed cycles of elements of B by DCyc(B) =
∞∑
n=1

B{1,2,...,n}/Cn.

Note there’s no empty cycle (a convention). Also note in Flajolet and
Sedgewick’s book, this is denoted as Cyc(B). But it’s better to write DCyc
since they’re directed cycles.

Proposition 5. Let B be a combinatorial class with B0 = ∅, let A =

DCyc(B). Then A(x) =
∞∑
k=1

φ(k)
k
log( 1

1−B(xk)
).

Proof.

A(x) =
∞∑
n=1

1

n

∑
k|n

φ(k)B(xk)
n
k

=
∞∑
k=1

φ(k)

k

∞∑
l=1

(kl=n)

1

l
B(xk)l

=
∞∑
k=1

φ(k)

k
(−log(1−B(xk)))

=
∞∑
k=1

φ(k)

k
log(

1

1−B(xk)
).

Example. Binary necklaces without flipping being allowed. B = DCyc(Z0 +
Z1).

Note Seq fits into this framework. Let En be the group {(1)(2) · · · (n)},
then Z(En; s1, s2, · · · , sn) = sn1 . Let B be a combinatorial class with B0 = ∅,

3



then

A = Seq(B)

=
∞∑
n=0

Bn

=
∞∑
n=0

B{1,2,··· ,n}/En

Thus,

A(x) =
∞∑
n=0

Z(En;B(x), . . . , B(xn))

=
∞∑
n=0

B(x)n

=
1

1−B(x)
.

Notation. We can also restrict all of these which we write in the subscripts.

DCycΩ(B) =
∑
ω∈Ω

B{1,2,...,ω}/Cω,

for Ω ⊆ Z>0. And similarly for Mset (Ω ⊆ Z≥0) etc.

Example. Binary rooted trees with no extra information (not plane, not
keeping track of left vs. right).

B = Z ×Mset≤2(B)

B(x) = x(Z(S0) + Z(S1;B(x)) + Z(S2;B(x), B(x2)))

= x(1 +B(x) +
1

2
(B(x) +B(x2))).

Example. Rooted trees where each vertex has an even number of children.

T = Z ×MSet{2n: n≥0}(T ).

References.

Flajolet and Sedgewick, Analytic combinatorics, Cambridge (2009), Cha I.2
Harary and Palmer, Graphical Enumeration, Cha 2
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2 Partitions

Let I be the combinatorial class of {1, 2, . . .} with the size of a nonnegative
integer being itself. Then I = Z × Seq(Z).

Definition. A partition λ of a nonnegative integer n is a list λ = (λ1 ≥
λ2 ≥ · · · ≥ λt > 0) with λ1 +λ2 + · · ·+λt = n. The λi are the parts of λ and
n is the size of λ.

Partitions form a combinatorial class P , a specification P = MSet(I),

P (x) = exp(
∞∑
k=1

I(xk)
k

) = exp(
∞∑
k=1

xk

k(1−xk)
).

Here’s another way to think of partitions. A partition is some number of
parts of size 1, some number of parts of size 2 and so on.
P = Seq(Z)× Seq(Z2)× · · ·
But is this infinite product legitimate ? The answer is Yes!

Lemma 6. Let A(1), A(2), . . . be combinatorial classes with ε ∈ A(i) and

|ai| ≥ i for ai ∈ A(i) and ai 6= ε. Then we can define
∞∏
i=1

A(i) to be the com-

binatorial class whose elements are infinite sequences (a1, a2, · · · ) such that
ai ∈ A(i) and eventually all aj = ε. From this fact we have |(a1, a2, · · · )| =

|a1|+ |a2|+ · · · which is a finite sum. Furthermore, A(x) =
∞∏
i=1

A(i)(x)

Proof. An = (A(1) ×A(2) × · · · × A(n))n by |ai| ≥ i for ai ∈ A(i) and ai 6= ε.
So

an = (A(1) ×A(2) × · · · × A(n))n

= [xn]
n∏
i=1

A(i)(x)

= [xn]
∞∏
i=1

A(i)(x)

by the same reason above. So returning to partitions P (x) =
∞∏
n=1

1
1−xn .

How about restrictions?

Example. Partitions with all parts≤ k.

P = Seq(Z)× Seq(Z2)× · · · × Seq(Zk), P (x) =
k∏
i=1

1
1−xi .
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Example. Partitions with at most k parts.
P = MSet≤k(I).

By the cycle index polynomials we have an expression for this but here’s
something easier.

Definition. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λt > 0) be a partition, the Ferrer’s
diagram of λ is the diagram with first row containing λ1 boxes, next row
containing λ2 boxes etc. all left justified.

Example. λ = (4, 3, 3, 2)

Definition. Let P be the combinatorial class of partitions, define Φ to be the
size-preserving automorphism of P given by reflecting the Ferrer’s diagram
about y = −x, where the top left corner is at (0, 0).

Note if λ has k parts then Φ(λ) has largest part= k.
There are many decompositions of partitions, some we’ll see in the par-

titions section of the course. For now just one more.

Definition. Let λ be a partition. The Ferrer’s diagram of λ has a unique
maximal square (beginning in the top left corner) called the Durfee square.

The Durfee square gives us another decompositions.

P =
∞∑
k=1

(Zk2 × Pat most k parts × Pparts≤k)

P (x) =
∞∑
k=1

xk
2

(
k∏
i=1

1

1− xi
)2

Note we get some nontrivial identities of some power series by taking
different ways to view the same combinatorial class P which is interesting.
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