Math 821, Spring 2013, Lecture 12

Karen Yeats
(Scribe: Yue Zhao)

February 28, 2013

1 Duals

Definition. (1) Let V be a finite dimensional vector space over k, then $V^{*}=\operatorname{Hom}(V, k)$ the space of linear maps from V to k.
(2) If $\Phi: V \rightarrow W$ is a linear map, then $\Phi^{*}: W^{*} \rightarrow V^{*}$ by $\left(\Phi^{*}(f)\right)(v)=$ $f(\Phi(v))$.
(3) If $v_{1}, v_{2}, \cdots, v_{n}$ is a basis for V, let $f_{i} \in V^{*}$ be the map $f_{i}\left(v_{i}\right)=1$, $f_{i}\left(v_{j}\right)=0$ for $i \neq j$. Then $f_{1}, f_{2}, \cdots, f_{n}$ is a basis of V^{*}, called the dual basis.

Note. (2) says taking duals reverses arrows. So we should expect algebra \rightarrow coalgebra and vice versa.

Definition. A graded k-vector space $V=\bigoplus_{i=0}^{\infty} V_{i}$ is of finite type if each V_{i} is finite dimensional. Note if \mathcal{C} is a combinatorial class then $V \mathcal{C}=\bigoplus_{n=0}^{\infty} V \mathcal{C}_{n}$ is of finite type.

Definition. Let $V=\bigoplus_{n=0}^{\infty} V_{n}$ be a graded vector space of finite type. Then the restricted dual is $V^{o}=\bigoplus_{n=0}^{\infty} V_{n}^{*}$.
Note. The elements of V^{o} are linear maps from $V \rightarrow k$ which vanish on all but finitely many of the V_{n}.

So if we have a graded algebra, take its restricted dual (from now on just call this the dual) get a coalgebra and vice versa. So a graded bialgebra will have a dual which is also a graded bialgebra.

Note. Connected is preserved under duals because $k^{*}=\operatorname{Hom}(k, k) \cong k$. So the dual of a graded connected finite type Hopf algebra is a graded connected finite type Hopf algebra.

But what does this look like concretely?
Let A be a graded connected finite type Hopf algebra. What is $\triangle_{A^{o}}$?

$$
\begin{gathered}
\triangle_{A^{o}}: A^{o} \rightarrow A^{o} \otimes A^{o} \\
{\triangle A^{o}}(f)(a \otimes b)=f(a b)
\end{gathered}
$$

where $A^{o}=\bigoplus_{n=0}^{\infty} \operatorname{Hom}\left(A_{n}, k\right) \subseteq \operatorname{Hom}(A, k)$. What is ${ }_{A^{o}}$?

$$
\begin{gathered}
\cdot A^{o}: A^{o} \otimes A^{o} \rightarrow A^{o} \\
\left(\cdot{ }_{A^{o}}(f \otimes g)\right)(a)=(f \otimes g)(\triangle(a))
\end{gathered}
$$

Write this in terms of a basis.
Proposition 1. Say $\left\{a_{i}\right\}_{i \in I}$ a basis for A a graded connected finite type Hopf algebra and let $\left\{f_{i}\right\}_{i \in I}$ be the dual basis, write

$$
\begin{array}{r}
a_{j} a_{k}=\sum_{i \in I} c_{j, k}^{i} a_{i} \\
\text { then } \triangle_{A^{o}}\left(f_{i}\right)=\sum_{(j, k) \in I \times I} c_{j, k}^{i} f_{j} \otimes f_{k}
\end{array}
$$

and dually, write

$$
\begin{array}{r}
\triangle\left(a_{i}\right)=\sum_{(j, k) \in I \times I} d_{j, k}^{i} a_{j} \otimes a_{k} \\
\text { then } f_{j} \cdot A^{\circ} f_{k}=\sum_{i \in I} d_{j, k}^{i} f_{i}
\end{array}
$$

Proof. It suffices to prove the first part by the previous observation.

$$
\triangle_{A^{o}}\left(f_{i}\right)\left(a_{j} \otimes a_{k}\right)=f_{i}\left(a_{j} a_{k}\right)=f_{i}\left(\sum_{l \in I} c_{j, k}^{l} a_{l}\right)=\sum_{l \in I} c_{j, k}^{l} f_{i}\left(a_{l}\right)=c_{j, k}^{i}
$$

Example. Let $T V=$ words let $A=T V$, what is A° ?
A basis for A is given by words, so the dual basis for A° is indexed by words, thinking of a basis element as its index, we can view A^{o} as also being a Hopf algebra of words.

Recall multiplication on A is concatenation and comultiplication on A is anti-shuffle. So comultiplication of A° is deconcatenation
$\triangle_{A^{o}}(a b c d)=\mathbb{1} \otimes a b c d+a \otimes b c d+a b \otimes c d+a b c \otimes d+a b c d \otimes \mathbb{1}$
multiplication on A° is shuffle

$$
a b \cdot A^{o} c d=a b c d+a c b d+c a b d+a c d b+c a d b+c d a b
$$

Example. Let H be the Connes-Kreimer Hopf algebra of rooted trees, what is H^{o} ?

What is multiplication in H^{o}, it has to be dual to taking admissible cuts so it will be a grafting operator. eg.

The comultiplication in H^{0} is the dual of disjoint union

I partition the connected components into two parts in all possible ways.
This is almost isomorphic to the Grossman-Larson Hopf algebra in the following way for each forrest $t_{1}, t_{2}, \cdots, t_{n}$ of H^{o} form the tree $t_{1} t_{2}^{\sigma} \cdots t_{n}$, these are the basis for the Grossman-Larson Hopf algebra G (note no empty tree here). Now the size of a tree is its number of edges, so • is size 0 .

If we define the dual space of \mathcal{H} with respect to a symmetric factor, i.e,

We can import $\cdot{ }_{H^{o}}, \triangle_{H^{o}} . t_{1} \cdot{ }_{G} t_{2}$ grafts the child of the root of t_{1} into t_{2} (actually usually define the opposite of this, i.e. graft children of t_{2} into t_{1}) and $\triangle_{G}(t)$ partitions the children of root of t onto the two sides of \otimes and given them a new root on each side.

References. Victor Reiner, Hopf Algebras In Combinatorics, Cha 1.
For Grossman-Larson Hopf algebra: see arXiv:math/0003074, Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees.
arXiv:math/0201253, Michael E. Hoffman, Combinatorics of Rooted Trees and Hopf Algebras.

$2 B_{+}$

Working in the Connes-Kreimer Hopf algebra H, what are the primitive elements?

- . $-\frac{1}{2} \bullet \bullet$
(recall primitive $\triangle(a)=a \otimes \mathbb{1}+\mathbb{1} \otimes a)$
Check $\tilde{\triangle}\left(\bullet-\frac{1}{2} \bullet \bullet\right)=\bullet \otimes \bullet-\frac{1}{2}(\bullet \otimes \bullet+\bullet \bullet \bullet)=0$
Definition. $B_{+}: H \rightarrow H$ is the linear function which takes a forest $t_{1}, t_{2}, \cdots, t_{n}$ and returns $\stackrel{t_{1} t_{2}^{\prime} \cdots}{n}$

What is $\triangle B_{+}$?

$$
\begin{aligned}
\Delta B_{+}\left(t_{1} t_{1} \cdots t_{n}\right) & =\triangle\left(t_{1} t_{2}^{\prime} \cdots \boldsymbol{t}_{n}\right) \\
& =t_{1} t_{2}^{\cdot} \cdots \boldsymbol{t}_{n} \otimes \mathbb{1}+\left(i d \otimes B_{+}\right) \prod_{i=1}^{n} \sum_{\text {admissible cut of } t_{i}} P_{c}\left(t_{i}\right) \otimes R_{c}\left(t_{i}\right) \\
& =B_{+}\left(t_{1} t_{1} \cdots t_{n}\right) \otimes \mathbb{1}+\left(i d \otimes B_{+}\right)\left(\triangle\left(t_{1} t_{1} \cdots t_{n}\right)\right) \\
\Rightarrow \triangle B_{+} & =B_{+} \otimes \mathbb{1}+\left(i d \otimes B_{+}\right) \triangle
\end{aligned}
$$

33 line summary of cohomology

- You need a family maps b_{n} from objects of size n to objects of size $n+1$ with $b^{2}=b_{n+1} b_{n}=0$.
- Take quotients $\operatorname{Ker}(b) / \operatorname{Im}(b)$.
- Use these to understand your original objects.

For us we want "objects of size n" to be $\operatorname{Hom}\left(H, H^{\otimes n}\right)$ (actually H could be any bialgebra here) and $b: \operatorname{Hom}\left(H, H^{\otimes n}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes n+1}\right)$.

$$
b L=(i d \otimes L) \triangle+\sum_{i=1}^{n}(-1)^{i} \triangle_{i} L+(-1)^{n+1} L \otimes \mathbb{1}
$$

where, $\triangle_{i}=i d \otimes \cdots \otimes \triangle \otimes i d \cdots \otimes i d, \triangle$ is the $i-$ th part.
This gives the Hochschild cohomology of bialgebras. If I were to do this, one of the first thing I'd need to know is $\operatorname{Ker}\left(b_{1}\right)$

$$
\begin{aligned}
0 & =b_{1} L \\
& =(i d \otimes L) \triangle-\triangle L+L \otimes \mathbb{1} \\
\text { so } \triangle L & =L \otimes \mathbb{1}+(i d \otimes L) \triangle
\end{aligned}
$$

that's the property B_{+}has, this is called the 1-cocycle property.
Comment. This 1-cocycle property is really important in these Renormalization Hopf algebras (like Connes-Kreimer) but I haven't seen it appear in other combinatorial hopf algebras.

4 Specifications and Combinatorial DysonSchwinger equations

Again let H be the Connes-Kreimer Hopf algebra. I can use B_{+}to give combinatorial specifications in a different languages.
Example. $T(x)=\mathbb{1}-x B_{+}\left(\frac{1}{T(x)}\right)$
I want a solution to this in $H[[x]]$, expand this recursively

this is just $\mathcal{T}=\mathcal{E}+\mathcal{Z} \times \operatorname{Seq}(\mathcal{T}-\mathcal{E})$, plane rooted trees then forget the plane structure giving above coefficients.

Example. $T(x)=\mathbb{1}+x B_{+}\left(T(x)^{2}\right)$

$$
T(x)=\mathbb{1}+x \bullet+x^{2}(2 \bullet)+x^{3}\left(4 \vdots+\mathbf{\varrho}_{\bullet}\right)+O\left(x^{4}\right)
$$

$\mathcal{T}=\mathcal{E}+\mathcal{Z} \times \mathcal{T}^{2}$ and forget the extra structure to get the coefficients.
These equations (and more general ones) are called combinatorial DysonSchwinger equations (this name is given by Dr. Karen Yeats) they give some specifications in the Hopf algebra context. They are physically important and give the sums of trees/ feynman graphs which contributes to a given physical process.

