Math 821, Spring 2013, Lecture 12

Karen Yeats (Scribe: Yue Zhao)

February 28, 2013

1 Duals

- **Definition.** (1) Let V be a finite dimensional vector space over k, then $V^* = Hom(V, k)$ the space of linear maps from V to k.
- (2) If $\Phi: V \to W$ is a linear map, then $\Phi^*: W^* \to V^*$ by $(\Phi^*(f))(v) = f(\Phi(v))$.
- (3) If v_1, v_2, \dots, v_n is a basis for V, let $f_i \in V^*$ be the map $f_i(v_i) = 1$, $f_i(v_j) = 0$ for $i \neq j$. Then f_1, f_2, \dots, f_n is a basis of V^* , called the dual basis.

Note. (2) says taking duals reverses arrows. So we should expect algebra \rightarrow coalgebra and vice versa.

Definition. A graded k-vector space $V = \bigoplus_{i=0}^{\infty} V_i$ is of finite type if each V_i is finite dimensional. Note if C is a combinatorial class then $VC = \bigoplus_{n=0}^{\infty} VC_n$ is of finite type.

Definition. Let $V = \bigoplus_{n=0}^{\infty} V_n$ be a graded vector space of finite type. Then the restricted dual is $V^o = \bigoplus_{n=0}^{\infty} V_n^*$.

Note. The elements of V° are linear maps from $V \to k$ which vanish on all but finitely many of the V_n .

So if we have a graded algebra, take its restricted dual (from now on just call this the dual) get a coalgebra and vice versa. So a graded bialgebra will have a dual which is also a graded bialgebra.

Note. Connected is preserved under duals because $k^* = Hom(k, k) \cong k$. So the dual of a graded connected finite type Hopf algebra is a graded connected finite type Hopf algebra.

But what does this look like concretely? Let A be a graded connected finite type Hopf algebra. What is Δ_{A^o} ?

$$\Delta_{A^o} : A^o \to A^o \otimes A^o$$
$$\Delta_{A^o}(f)(a \otimes b) = f(ab)$$

where $A^{o} = \bigoplus_{n=0}^{\infty} Hom(A_{n}, k) \subseteq Hom(A, k)$. What is $\cdot_{A^{o}}$?

$$\begin{array}{c} \cdot_{A^o} : A^o \otimes A^o \to A^o \\ (\cdot_{A^o}(f \otimes g))(a) = (f \otimes g)(\triangle(a)) \end{array}$$

Write this in terms of a basis.

Proposition 1. Say $\{a_i\}_{i \in I}$ a basis for A a graded connected finite type Hopf algebra and let $\{f_i\}_{i \in I}$ be the dual basis, write

$$a_j a_k = \sum_{i \in I} c^i_{j,k} a_i$$

then $riangle_{A^o}(f_i) = \sum_{(j,k) \in I imes I} c^i_{j,k} f_j \otimes f_k$

and dually, write

$$\triangle(a_i) = \sum_{(j,k)\in I\times I} d^i_{j,k} a_j \otimes a_k$$

then $f_j \cdot_{A^o} f_k = \sum_{i\in I} d^i_{j,k} f_i$

Proof. It suffices to prove the first part by the previous observation.

$$\Delta_{A^{o}}(f_{i})(a_{j} \otimes a_{k}) = f_{i}(a_{j}a_{k}) = f_{i}(\sum_{l \in I} c_{j,k}^{l}a_{l}) = \sum_{l \in I} c_{j,k}^{l}f_{i}(a_{l}) = c_{j,k}^{i}$$

Example. Let TV = words let A = TV, what is A° ?

A basis for A is given by words, so the dual basis for A° is indexed by words, thinking of a basis element as its index, we can view A° as also being a Hopf algebra of words.

Recall multiplication on A is concatenation and comultiplication on A is anti-shuffle. So comultiplication of A° is deconcatenation

 $\triangle_{A^o}(abcd) = \mathbb{1} \otimes abcd + a \otimes bcd + ab \otimes cd + abc \otimes d + abcd \otimes \mathbb{1}$

multiplication on A^o is shuffle

$$ab \cdot_{A^{o}} cd = abcd + acbd + cabd + acdb + cadb + cdab$$

Example. Let H be the Connes-Kreimer Hopf algebra of rooted trees, what is H° ?

What is multiplication in H° , it has to be dual to taking admissible cuts so it will be a grafting operator. eg.

$$\bigwedge \cdot_{H^o} = \bigwedge + + \bigwedge$$

I partition the connected components into two parts in all possible ways.

This is almost isomorphic to the Grossman-Larson Hopf algebra in the following way for each forrest t_1, t_2, \dots, t_n of H^o form the tree $t_1 t_2 \cdots t_n$, these are the basis for the Grossman-Larson Hopf algebra G (note no empty tree here). Now the size of a tree is its number of edges, so \bullet is size 0.

We can import \cdot_{H^o} , Δ_{H^o} . $t_1 \cdot_G t_2$ grafts the child of the root of t_1 into t_2 (actually usually define the opposite of this, i.e. graft children of t_2 into t_1) and $\Delta_G(t)$ partitions the children of root of t onto the two sides of \otimes and given them a new root on each side.

References. Victor Reiner, Hopf Algebras In Combinatorics, Cha 1. For Grossman-Larson Hopf algebra: see arXiv:math/0003074, Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees.

arXiv:math/0201253, Michael E. Hoffman, Combinatorics of Rooted Trees and Hopf Algebras.

2 B_+

Working in the Connes-Kreimer Hopf algebra H, what are the primitive elements?

•,
$$\oint_{-\frac{1}{2}} \bullet_{-\frac{1}{2}} \bullet_{-\frac{1}{2}}$$

Definition. $B_+: H \to H$ is the linear function which takes a forest t_1, t_2, \cdots, t_n and returns t_1, t_2, \cdots, t_n

What is $\triangle B_+$?

$$\Delta B_{+}(t_{1}t_{1}\cdots t_{n}) = \Delta(t_{1}t_{2}\cdots t_{n})$$

$$= t_{1}t_{2}\cdots t_{n} \otimes \mathbb{1} + (id \otimes B_{+})\prod_{i=1}^{n}\sum_{admissible \ cut \ of \ t_{i}} P_{c}(t_{i}) \otimes R_{c}(t_{i})$$

$$= B_{+}(t_{1}t_{1}\cdots t_{n}) \otimes \mathbb{1} + (id \otimes B_{+})(\Delta(t_{1}t_{1}\cdots t_{n}))$$

$$\Rightarrow \Delta B_{+} = B_{+} \otimes \mathbb{1} + (id \otimes B_{+})\Delta$$

3 3 line summary of cohomology

- You need a family maps b_n from objects of size n to objects of size n+1 with $b^2 = b_{n+1}b_n = 0$.
- Take quotients Ker(b)/Im(b).
- Use these to understand your original objects.

For us we want "objects of size n" to be $Hom(H, H^{\otimes n})$ (actually H could be any bialgebra here) and $b: Hom(H, H^{\otimes n}) \to Hom(H, H^{\otimes n+1})$.

$$bL = (id \otimes L) \triangle + \sum_{i=1}^{n} (-1)^{i} \triangle_{i}L + (-1)^{n+1}L \otimes \mathbb{1}$$

where, $\triangle_{i} = id \otimes \cdots \otimes \triangle \otimes id \cdots \otimes id$, \triangle is the *i*-th part.

This gives the Hochschild cohomology of bialgebras. If I were to do this, one of the first thing I'd need to know is $Ker(b_1)$

$$0 = b_1 L$$

= $(id \otimes L) \triangle - \triangle L + L \otimes \mathbb{1}$
so $\triangle L = L \otimes \mathbb{1} + (id \otimes L) \triangle$

that's the property B_+ has, this is called the 1-cocycle property.

Comment. This 1-cocycle property is really important in these Renormalization Hopf algebras (like Connes-Kreimer) but I haven't seen it appear in other combinatorial hopf algebras.

4 Specifications and Combinatorial Dyson-Schwinger equations

Again let H be the Connes-Kreimer Hopf algebra. I can use B_+ to give combinatorial specifications in a different languages.

Example. $T(x) = \mathbb{1} - xB_+(\frac{1}{T(x)})$ I want a solution to this in H[[x]], expand this recursively

$$T(x) = 1 - x \bullet - x^2 - x^3 (\bullet + \bullet) - x^4 (\bullet + \bullet + 2 \bullet + \bullet) + O(x^5)$$

this is just $\mathcal{T} = \mathcal{E} + \mathcal{Z} \times Seq(\mathcal{T} - \mathcal{E})$, plane rooted trees then forget the plane structure giving above coefficients.

Example. $T(x) = 1 + xB_+(T(x)^2)$

$$T(x) = 1 + x \cdot + x^2(2 \cdot) + x^3(4 \cdot + 4 \cdot) + O(x^4)$$

 $\mathcal{T} = \mathcal{E} + \mathcal{Z} \times \mathcal{T}^2$ and forget the extra structure to get the coefficients.

These equations (and more general ones) are called combinatorial Dyson-Schwinger equations (this name is given by Dr. Karen Yeats) they give some specifications in the Hopf algebra context. They are physically important and give the sums of trees/ feynman graphs which contributes to a given physical process.