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1 Schur functions

1.1 Introduction

These are possibly the least natural but most important basis for symmetric functions.

Definition A semistandard Young tableau of shape λ (or column strict tableau) is an assignment of
positive integers to the boxes of the Ferrer’s diagram of λ such that the entries are strictly increasing
down the columns and weakly increasing along the rows.

Example 1 1 1 6
3 4
4


The multiplicity of entries are simply a multi-set of integers, so we get a new partition.

Definition If Y is a young tableau write the content of Y , cont(Y ), to be the partition µ = (c1, . . . , cn)
with ci the multiplicity of i in Y .

Definition The Schur function indexed by λ is

sλ =
∑

Y semi-standard young tableau of shapeλ

xcont(Y )

Example We compute s(2,1) by filling the tableau with shape λ.[
1 1
2

]
,

[
1 2
2

]
,

[
1 2
3

]
,

[
1 3
2

]
, . . .

So s(2,1) = x21x2 + x1x
2
2 + 2x1x2x3 + . . . = m(2,1) + 2m(1,1,1).
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Proposition 1.1. sλ ∈ Λ(x)

Proof. Since adjacent transpositions generate all permutations we only need to check that sλ is sym-
metric under these. Consider the appearances of i, i+1 in a semistandard Young Tableau contributing
to sλ. 

i i+ 1
i i i

i i i i i+ 1 i+ 1
i i i i+ 1 i+ 1 i+ 1 i+ 1

i+ 1


Now we want to define an involution on the Young tableau of shape λ which swaps the number of is
and (i+ 1)s. To define this

• ignore all vertical
[

i
i+ 1

]
pairs

• the other entries now look like

iiiiii︸︷︷︸
r

(i+ 1)(i+ 1)(i+ 1)(i+ 1)(i+ 1)(i+ 1)︸ ︷︷ ︸
s

Then the involution converts it to

iiiiii︸︷︷︸
s

(i+ 1)(i+ 1)(i+ 1)(i+ 1)(i+ 1)(i+ 1)︸ ︷︷ ︸
r

This remains semistandard because entries above or to the left are in
[

i
i+ 1

]
pairs or are unaffected

so we are ok. Clearly it is an involution and preserves the shape so we are done.

Proposition 1.2. The sλ are a basis for Λ(x)

Proof. Same flavor as last time, observe

sλ =
∑
µ

Kλ,µx
µ

where Kλ,µ = Kostka number = # of semistandard Young tableau of shape λ and cont(Y ) = µ.

The Kλ,µ are finite since cont(Y ) has at most |λ| non-zero entries, so there can only be finitely many
in a given partition. Next note that both sides of the observation are symmetric functions. On the right
Kλ,µx

µ appears and on the left xµ appears as many times as there are semistandard Young tableau of
shape λ with content µ, i.e Kλ,µ times.
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Next, observe that if µ/�λ thenKλ,µ = 0. Suppose we could fill a tableau of shape λ and content µ but
µ/�λ. Then we have for some j that λ1−µ1 + . . .+λj−µj < 0. Since the columns of a semistandard
Young tableau are strict, all copies of {1, . . . , j} will not be in the first j rows. Thus the number of
boxes in first j rows is λ1 + . . .+ λj ≥ # copies of 1, . . . , j = µ1 + . . .+ µj . This is a contradiction.

Finally, Kλ,λ = 1 since 
1 1 1 1 1 1 1
2 2 2 2 2
3 3 3
...


Is the only possible filling. We now have a triangular system with 1’s on the diagonal so as before we
are done.

1.2 The co-algebra structure on other bases

Definition let µ, λ be partitions say µ ⊆ λ if µi ≤ λi for all i.

Observe if µ ⊆ λ then the Ferrer’s diagram of µ is contained in the Ferrer’s diagram of λ with the top
left corners aligned.

Definition If µ ⊆ λ are partitions then the skew Ferrer’s diagram λ/µ is the Ferrer’s diagram of λ
with the boxes of the Ferrer’s diagram of µ removed (top left corners aligned).

Example

(5, 2, 1, 1)/(3, 2, 1) =


. . . 22

. .

.
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Ex (7, 5, 3, 2)/(3, 2, 2, 2)

(7, 5, 3, 2)/(3, 2, 2, 2) =


. . . 2 222

. . 2 2

. . 2

. .


Note its not necessarily connected. We can have semistandard fillings of these are well with the same
constraints.

Definition Given µ ⊆ λ partitions let

sλ/µ =
∑

semistandard fillings T of shape λ/µ

xcont(T )

These are called skew-schur functions. These are indeed symmetric (same involution argument).
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Proposition 1.3. :

(a) ∆pn = 1⊗ pn + pn ⊗ 1. Indeed they are all primitive.

(b) ∆en =
∑

i+j=n,i,j≥0 ei ⊗ ej

(c) ∆hn =
∑

i+j=n,i,j≥0 hi ⊗ hj

(d) ∆sλ =
∑

µ⊆λ sµ ⊗ sλ

Proof. (a) ∆pn =
∑
xni +

∑
yni = pn(x) + pn(y) = pn ⊗ 1 + 1⊗ pn

(b)

∆en =
∑

i1<...<in

(x′s and y′s) =
n∑
i=0

( ∑
i1<...<in

(xi1 . . . xik)

)( ∑
i1<...<in

(yi1 . . . yik)

)
n∑
k=0

ek(x)en−k(y)

(c) same as above

(d) Observe that since we’re working with symmetric functions we can take any total order on the
positive integers to give the semistandard conditions in the tableaux. It doesn’t need to be the
same order type. So

∆sλ = sλ(x, y)

Choose the ordering x1 < x2 < . . . < y1 < y2 < . . .. Then in filling in a shape λ the xs will
always appear above and to the left of any ys in every row and column. So the partition of the
diagram filled with the xs is itself the Ferrer’s diagram of a partition µ and the ys are in λ/µ. In
both cases satisfying the semi-standard condition.

Conversely, given µ ⊆ λ those fillings of λ with x’s in µ and y’s in λ/µ are valid fillings. So
∆sλ =

∑
µ⊆λ sµ ⊗ sλ

Now we’re ready to sort out hn.

Proposition 1.4. The {en}n and {hn}n are algebraically independent and generate Λ(x) as a poly-
nomial algebra. Furthermore, if char k = 0 this is true of {pn}n as well.

Proof. We know the eλ and pλ are bases but they themselves are monomials in the en, pn. so this
gives the result in this case. For hn consider the generating functions

H(t) =
∑
n≥0

hn(x)tn = ”MSet(x)” =
∞∏
i=1

1

1− xit
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E(t) =
∑
n≥0

en(x)tn = ”PSet”(x) =
∞∏
i=1

(1 + xit)

So

H(t)E(−t) =
∞∏
i=1

1− xit
1− xit

= 1

and by co-efficient extraction

[tn]H(t)E(−t) =

{
1 if n = 0

0 otherwise
=

∑
i+j=n,i,j≥0

(−1)jhi(x)ej(x)

So we have a system of equations which we can solve for either en or hn.

e0 = h0 = 1

en = en−1h1 − en−2h2 + . . .

hn = hn−1e2 − hn−2e2 + . . .

}
(∗)

these have the same shape . We know the {en} are algebraically independent generators, so define

ω : Λ(x)→ Λ(x)

en → hn

since the en are independent generators this is a well defined endomorphism. Since the recurrences
(∗) are the same we have ω ◦ ω = id. So ω is an involution and the {hn} are independent algebra
generators.

Remark ω is called the fundamental involution
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