MATH 821, SPRING 2012, ASSIGNMENT 1 SOLUTIONS

(1) First

$$
A(x)=\sum_{n \geq 0} Z\left(D_{n}, B(x), B(x)^{2}, \ldots, B(x)^{n}\right)
$$

So let's focus on the cycle index polynomials.

$$
\begin{aligned}
\sum_{n \geq 0} Z\left(D_{n}, s_{1}, \ldots, s_{n}\right) & =\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in D_{n}} s_{1}^{j_{1}(\sigma)} \cdots s_{n}^{j_{n}(\sigma)} \\
& =\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in C_{n}} s_{1}^{j_{1}(\sigma)} \cdots s_{n}^{j_{n}(\sigma)}+\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in C_{n}} s_{1}^{j_{1}(\tau \sigma)} \cdots s_{n}^{j_{n}(\tau \sigma)} \\
& =\frac{1}{2} Z\left(C_{n}, s_{1}, \ldots, s_{n}\right)+\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in C_{n}} s_{1}^{j_{1}(\tau \sigma)} \cdots s_{n}^{j_{n}(\tau \sigma)}
\end{aligned}
$$

where τ is the order two generataor of the dihedral group (the flip generator).
If n is even, then we have two kinds of elements in τC_{n}, flips across the axis through opposite edges of the cycle and flips across the axis through opposite vertices of the cycle. The first of these consists of $n / 2$ transpositions in disjoint cycle representation, while the second of these consists of $(n-2) / 2$ transpositions and 2 fixed points. Exactly half of the elements of τC_{n} are of each kind. Therefore for n even

$$
\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in C_{n}} s_{1}^{j_{1}(\tau \sigma)} \cdots s_{n}^{j_{n}(\tau \sigma)}=\frac{1}{4}\left(s_{1}^{2} s_{2}^{(n-2) / 2}+s_{2}^{n / 2}\right)
$$

If n is odd, then all elements in τC_{n} consist of a flip through an axis which goes through one edge and an opposite vertex of the cycle. Such a flip has $(n-1) / 2$ transpositions and one fixed point in its disjoint cycle representation. Therefore for n odd

$$
\begin{equation*}
\frac{1}{\left|D_{n}\right|} \sum_{\sigma \in C_{n}} s_{1}^{j_{1}(\tau \sigma)} \cdots s_{n}^{j_{n}(\tau \sigma)}=\frac{1}{2}\left(s_{1} s_{2}^{(n-1) / 2}\right) \tag{2}
\end{equation*}
$$

The result follows.
(a) $\mathcal{B}=\mathcal{Z}+\mathcal{Z} \times \mathcal{B}^{2}$ (you could also write one allowing the empty tree, but watch out you don't accidentally allow empty children).
(b) We have $B(x)=x+x B(x)^{2}$. Using the quadratic formula we get

$$
B(x)=\frac{1 \pm \sqrt{1-4 x^{2}}}{2 x}
$$

We must want the negative sign since if we sub in $x=0$ we should get 0 , which the negative sign gives, while the positive sign gives a pole at 0 . So

$$
B(x)=\frac{1-\sqrt{1-4 x^{2}}}{2 x}
$$

So $\left[x^{0}\right] B(x)=0$ and for $n>0$

$$
\begin{aligned}
{\left[x^{n}\right] B(x) } & =-\frac{1}{2}\left[x^{n+1}\right]\left(1-4 x^{2}\right)^{1 / 2} \\
& = \begin{cases}-\frac{1}{2}\binom{1 / 2}{(n+1) / 2}(-4)^{(n+1) / 2} & \text { if } n+1 \text { is ev en } \\
0 & \text { if } n+1 \text { is odd }\end{cases} \\
& = \begin{cases}-\frac{1}{2}\binom{(1 / 2}{m}(-4)^{m} & \text { if } n=2 m-1 \\
0 & \text { if } n=2 m\end{cases} \\
& = \begin{cases}-\frac{1}{2}\left(\frac{-1}{4}\right)^{m-1} \frac{1}{2 m}\binom{2 m-2}{m-1}(-4)^{m} & \text { if } n=2 m-1 \\
0 & \text { if } n=2 m\end{cases} \\
& = \begin{cases}\frac{1}{m}\binom{2 m-2}{m-1} & \text { if } n=2 m-1 \\
0 & \text { if } n=2 m\end{cases}
\end{aligned}
$$

(c) The trees of this problem only exist when n is odd, while the trees from lecture exist for all $n>0$. In both cases, however, they are counted by Catalan numbers. Specifically, if \mathcal{T} is the class of binary rooted trees from lecture, then for $n>0$,

$$
\left[x^{n}\right] T(x)=\frac{1}{n+1}\binom{2 n}{n}=C_{n}=\left[x^{2 n+1}\right] B(x)
$$

To be clear the trees from this problem are the class \mathcal{B} and the ones from lecture (with distinct left and right children) are \mathcal{T}.
To find the bijection first note that a tree $t \in \mathcal{B}_{2 n+1}$ has $n+1$ leaves. We can prove this by induction. It is true for $n=0$ since the only tree in that case is the one vertex tree which has one leaf. Take $n>0$ and suppose it is true for $k<2 n+1$. Since $n>0$ this tree has two nonempty children of its root, say of sizes $2 k+1$ and $2 \ell+1$ where $2(k+\ell)+2+1=2 n+1$ so $k+\ell+1=n$. By induction the subtrees at the root have $k+1$ and $\ell+1$ leaves respectively, so the tree has $k+1+\ell+1=n+1$ leaves.
Consider the map

$$
f: \mathcal{B} \rightarrow \mathcal{T}
$$

where $f(t)$ is the tree obtained from t by removing all the leaves of t. This gives a tree in \mathcal{T} since t originally had distinct left and right children, and upon removing leaves, some of them now may be empty. By the observation of the previous paragraph

$$
f: \mathcal{B}_{2 n+1} \rightarrow \mathcal{T}_{n}
$$

The inverse map

$$
g: \mathcal{T} \rightarrow \mathcal{B}
$$

is defined as follows. Let $g(t)$ be the tree obtained from t by putting a new leaf wherever a vertex of t has an empty child (including the original leaves of t which now receive two new leaves as children). The resulting tree has every vertex originally from t having degree 2 and the new vertices have degree 0 , so this is a tree in \mathcal{B}.

By construction the maps are inverses of each other, so so give the desired bijection.
(3) (a) $\mathcal{C}=\operatorname{SEQ}\left(\operatorname{SEQ}_{\geq 1}(\mathcal{Z})\right)$. Thus

$$
C(x)=\frac{1}{1-\frac{x}{1-x}}=\frac{1-x}{1-2 x}
$$

(b) $\mathcal{C}_{\text {at most } k \text { parts }}=\operatorname{SEQ}_{\leq k}\left(\operatorname{SEQ}_{\text {odd }}(\mathcal{Z})\right)=\sum_{i=0}^{k}\left(\mathcal{Z} \times \operatorname{SEQ}\left(\mathcal{Z}^{2}\right)\right)^{i}$. Thus odd parts

$$
C(x)=\sum_{i=0}^{k}\left(\frac{x}{1-x^{2}}\right)^{i}
$$

(4) (a) An element of $\Theta(\mathcal{C})_{n}$ is a pair (C, z) with $C \in \mathcal{C}_{n}$ and z an atom of C. For each $C \in \mathcal{C}_{n}$ there are n atoms making it up, and so $\left|\Theta(\mathcal{C})_{n}\right|=n\left|\mathcal{C}_{n}\right|$. Therefore Θ is admissible
(b) From the observation of the previous part

$$
A(x)=\sum_{n=0}^{\infty} n a_{n} x^{n}=x \frac{d}{d x} C(x)
$$

(5) solutions will vary

