MATH 821, SPRING 2012, ASSIGNMENT 3

DUE THURSDAY MARCH 14, 2013 IN CLASS

- (1) Let V_1 , V_2 , and V_3 be vector spaces over a field k. Show that $(V_1 \otimes V_2) \otimes V_3$ is isomorphic to $V_1 \otimes (V_2 \otimes V_3)$ using the universal property of tensor products.
- (2) Let A be a bialgebra. Prove that the convolution product makes $\operatorname{Hom}(A, A)$ into an algebra.
- (3) Let H be a graded, connected, finite-type Hopf algebra. Find an expression for the antipode of H° in terms of the structure functions of H.
- (4) Calculate the following things in the Connes-Kreimer Hopf algebra of rooted trees.

- (c) A characterization of the primitive elements which are homogeneous of degree 3 (note they may be formal sums)
- (5) Consider the combinatorial class C of plane rooted trees. Let $\mathcal{F} = \text{SEQ}(C)$ which we can view as forests with an order on their component trees.
 - (a) Show that $V\mathcal{F}$ can be made into a Hopf algebra where multiplication is concatenation of sequences of trees, and the coproduct on a single tree is the same as in the Connes-Kreimer Hopf algebra of rooted trees except that each $P_c(t)$ inherits an order from the plane structure of t. This is the Foissy or Holtkamp Hopf algebra of plane trees.
 - (b) Show that this Hopf algebra is isomorphic to its dual. (If you look it up for hints don't forget to cite your sources)