MATH 821, SPRING 2012, ASSIGNMENT 3 SOLUTIONS

(1) First we have a trilinear map

$$
f: V_{1} \times V_{2} \times V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)
$$

given by $f\left(v_{1}, v_{2}, v_{3}\right)=v_{1}\left(\otimes v_{2} \otimes v_{3}\right)$. Fixing any value v_{3} in the third component $f\left(\cdot, \cdot, v_{3}\right)$ is bilinear and so by the universal property of tensor products we have a linear map

$$
\phi_{v_{3}}: V_{1} \otimes V_{2} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)
$$

given by $\phi_{v_{3}}\left(v_{1} \otimes v_{2}\right)=f\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$.
Now consider

$$
g:\left(V_{1} \otimes V_{2}\right) \times V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)
$$

given by $g\left(v, v_{3}\right)=\phi_{v_{3}}(v)$ for $v \in V_{1} \otimes V_{2}$. Since f was linear in the third coordinate, g is linear in the third coordinate when applied to pure tensors and hence always. g is linear in the first coordinate since $\phi_{v_{3}}$ is linear for each v_{3}. Thus g is bilinear and so by the universal property of tensor products we have a linear map

$$
\psi:\left(V_{1} \otimes V_{2}\right) \otimes V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)
$$

given by $\psi\left(\left(v_{1} \otimes v_{2}\right) \otimes v_{3}\right)=v_{1} \otimes\left(v_{2} \otimes v_{3}\right)=f\left(v_{1}, v_{2}, v_{3}\right)$. The same argument with the parenthesization the other way gives the inverse map and hence this is an isomorphism proving the result.
(2) Let $f, g, h \in \operatorname{Hom}(A, A)$. Then

$$
\begin{aligned}
(f \star g) \star h & =\cdot((f \star g) \otimes h) \Delta \\
& =\cdot(\cdot \otimes \mathrm{Id})(f \otimes g \otimes h)(\Delta \otimes \mathrm{Id}) \Delta \\
& =\cdot(\operatorname{Id} \otimes \cdot)(f \otimes g \otimes h)(\mathrm{Id} \otimes \Delta) \Delta \\
& =f \star(g \star h)
\end{aligned}
$$

by associativity of • and coassociativity of Δ. Also

$$
\begin{aligned}
f \star(u \circ \epsilon) & =\cdot(f \otimes(u \circ \epsilon)) \Delta \\
& =\cdot(\operatorname{Id} \otimes u)(f \otimes \operatorname{Id})(\operatorname{Id} \otimes \epsilon) \Delta \\
& =f
\end{aligned}
$$

by the unit and counit properties, and similarly on the other side

$$
\begin{aligned}
(u \circ \epsilon) \star f & =\cdot((u \circ \epsilon) \otimes f) \Delta \\
& =\cdot(u \otimes \mathrm{Id})(\mathrm{Id} \otimes f)(\epsilon \otimes \mathrm{Id}) \Delta \\
& =f
\end{aligned}
$$

So $\operatorname{Hom}(A, A)$ is an algebra under the convolution product.
(3) There are a number of ways to approach this. Here's the very explicit approach, probably not the prettiest, but you just do it:

Let S° be the antipode of H°, and similarly for the other structure functions.
Let $\left\{a_{i}\right\}$ be a basis of H with $a_{0}=1$ and $\left\{f_{i}\right\}$ the dual basis of H°. Let $\Delta\left(a_{i}\right)=$ $\sum_{j, k} c_{j, k}^{(i)} a_{j} \otimes a_{k}$ and $a_{j} \cdot a_{k}=\sum_{i} d_{j, k}^{(i)} a_{i}$. We know from class that $\Delta^{\circ}\left(f_{i}\right)=\sum_{j, k} d_{j, k}^{(i)} f_{j} \otimes$ f_{k} and $f_{j} \cdot{ }^{\otimes} f_{k}=\sum_{i} c_{j, k}^{(i)} f_{i}$.

Write $S^{\circ}\left(a_{i}\right)=\sum_{\ell} e_{\ell}^{(i)} a_{\ell}$. Then

$$
\cdot(S \otimes \mathrm{Id}) \Delta=u \circ \epsilon
$$

so for $i>0$

$$
0=\cdot(S \otimes \mathrm{Id}) \Delta\left(a_{i}\right)=\sum_{j, k, \ell, m} d_{\ell, k}^{(m)} e_{\ell}^{(j)} c_{j, k}^{(i)} a_{m}
$$

so since the a_{i} form a basis

$$
\begin{equation*}
\sum_{j, k, \ell, m} d_{\ell, k}^{(m)} e_{\ell}^{(j)} c_{j, k}^{(i)}=0 \tag{1}
\end{equation*}
$$

I claim that $S^{\circ}=S^{*}\left(\right.$ where $S^{*}(f)(a)=f(S(a))$ as usual). Note that $S^{*}\left(f_{i}\right)\left(a_{j}\right)=$ $f_{i}\left(S\left(a_{j}\right)\right)=e_{i}^{(j)}$ so $S^{*}\left(f_{i}\right)=\sum_{j} e_{i}^{(j)} f_{j}$.

Since H is graded and connected we also know that H° is graded and connected, so S° is uniquely defined by satisfying

$$
.^{\circ}\left(S^{\circ} \otimes \mathrm{Id}\right) \Delta^{\circ}=u^{\circ} \circ \epsilon^{\circ}
$$

Consider this with S^{*} on the dual basis. For $f_{0}=\mathrm{Id}$ we have

$$
\operatorname{Id}=u^{\circ}\left(\epsilon^{\circ}\left(f_{0}\right)\right)
$$

and

$$
\cdot^{\circ}\left(S^{*} \otimes \operatorname{Id}\right) \Delta^{\circ}\left(f_{0}\right)=S^{*}(\mathrm{Id})=\operatorname{Id}
$$

as desired. For $i>0$ we have

$$
0=u^{\circ}\left(\epsilon^{\circ}\left(f_{i}\right)\right)
$$

and

$$
{ }^{\circ}\left(S^{*} \otimes \mathrm{Id}\right) \Delta^{\circ}\left(f_{i}\right)=\sum_{j, k, \ell, m} c_{\ell, k}^{(m)} e_{j}^{(\ell)} d_{j, k}^{(i)} f_{m}=0
$$

by (1), which proves the result.
(4) See handwritten pages appended.
(5) See http://loic.foissy.free.fr/pageperso/preprint3.pdf

σ

