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Proposition 1. Suppose a is a k-vector space which is both a k-algebra
under (·, u) and a k-coalgebra under (∆, ε). The following are equivalent;

1. (∆, ε) are algebra homomorphisms (ie. A is a bialgebra)

2. (·, u) are coalgebra morphisms

3. the four diagrams in Figure 1 commute.

A⊗A

∆⊗∆

A⊗A⊗A⊗A

id⊗ τ ⊗ id

A⊗A⊗A⊗A

· ⊗ ·
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A

·
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u⊗ u
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Figure 1
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Proof. (1⇔ 3) the fact that (∆, ε) are algebra homomorphisms immediately
implies (3), purely from the definition, and vice versa.

(2 ⇔ 3) Reversing the arrows and relabelling accordingly; · ↔ ∆ and
ε↔ u, (c) and (d) switch and both (a) and (b) remain the same. By duality
then, the statements (2) and (3) are equivalent.

Example. Bialgebra of words; Tensor algebra (abbr. TA)
We can make the tensor algebra TV =

⊕∞
n=0 V

⊗n into a bialgebra via

ε |V ⊗0= id,

ε |⊕∞
n=0 V

⊗n= 0,

and
∆(a) = a⊗ 1 + 1⊗ a

for a ∈ A, and extend as an algebra homomorphism.
For example, writing ∆(a⊗ b⊗ c) as ∆(abc),

∆(abc) = ∆(a)∆(b)∆(c)

= (a⊗ 1 + 1⊗ a)(b⊗ 1 + 1⊗ b)(c⊗ 1 + 1⊗ c)
= abc⊗ 1 + ab⊗ c+ ac⊗ b+ a⊗ bc

+ bc⊗ a+ b⊗ ac+ c⊗ ab+ 1⊗ abc.

So, this is a kind of pulling apart operation. We can pull out all possible
subwords, putting the subword on the left and the remaining part on the
right. This is an antishuffle.

We now check that this structure behaves the way we want it to.
If a ∈ A,

(id⊗∆)(∆(a)) = (id⊗∆)(a⊗ 1 + 1⊗ a)

= a⊗ 1⊗ 1 + 1⊗ 1⊗ a+ 1⊗ a⊗ 1

(∆⊗ id)(∆(a)) = (∆⊗ id)(a⊗ 1 + 1⊗ a)

= 1⊗ a⊗ 1 + a⊗ 1⊗ 1 + 1⊗ 1⊗ a

If w1, w2 ∈ TA,

(id⊗∆)(∆w1w2) = (id⊗∆)(∆w1∆w2)

= ((id⊗∆)∆w1)((id⊗∆)∆w2)

= (∆⊗ id)∆w1((∆⊗ id)∆w2

= (∆⊗ id)∆(w1w2).
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TA

id

k ⊗ TA

ε⊗ id

TA⊗ TA

∆

id⊗ ε

TA⊗ k

TA

TA⊗ TA

∆

Figure 2

For the counit property, we want TA to behave as in Figure 2.
Take a word w = a1a2 · · · an ∈ TA. Then,

∆(w) = w ⊗ 1 + 1⊗ w + k

where k ∈ (
⊕∞

n=1A
⊗n) (

⊕∞
n=1A

⊗n). So (ε ⊗ id)∆(w) = 1 ⊗ w 7→ w and
(id⊗ ε)∆(w) = w ⊗ 1 7→ w.

More Vocabulary

Definition. A k-algebra A is commutative if it acts as in Figure 3, and
cocommutative if it acts as in Figure 4.

A⊗A A⊗A
τ

· ·
A

Figure 3

τ

· ·
C ⊗ C C ⊗ C

C

Figure 4

Example. The tensor algebra is not commutative, as multiplication is con-
catenation. It is cocommutative, however.

Example. Recall the Connes-Kreimer Hopf algebra of rooted trees from
last class. It is commutative, as multiplication is disjoint union. It is not
cocommutative, though, as there may be forests on the left, but only trees
on the right.
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Definition. A graded k-vector space is a k-vector space with a direct sum
decomposition

V =

∞⊕
k=0

Vn.

Call the elements of Vn homogeneous of degree n.

Note that if V , W are graded k-vector spaces, then V ⊗W is also graded
via

(V ⊗W )n =
n⊕

k=0

Vk ⊗Wn−k.

Definition. A linear map f : V → W between graded vector spaces is
graded (of degree zero) if f(Vn) ⊆Wn for all n.

Definition. An algebra, coalgebra, or bialgebra is graded if the underlying
vector space is graded and the defining maps (·, u,∆, ε) are graded.

Example. We can demonstrate k is a graded bialgebra in the trivial way;
put everything in degree zero.

Example. The tensor algebra is graded by length of words.

Example. The Connes-Kreimer algebra is graded by number of vertices.

In general
Take a combinatorial class C. Form a graded vector space

V =

∞⊕
k=0

Vk,

where Vk = span(Ck). So, V = V C, the vector space given by C.
Then, find an interesting “putting together” map for multiplication and

“taking apart” map for comultiplication.
Often, multiplication will be disjoint union if we have connected and not

connected objects, and coproduct will be about pulling out subobjects.

Definition. A graded k-vector space is called connected if V0 ∼= k.

Example. The tensor algebra is connected by definition.

Example. The Connes-Kreimer algebra is connected.
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Combinatorially, if c0 = 1, so C = {1}, a very typical situation, then the
degree zero part of V C is span{1} ∼= k. Hence, connected is very natural.

In graded connected bialgebras we get a lot of this for free.

Proposition 2. Let A be a graded connected bialgebra over k.

1. u : k → A0 is an isomorphism

2. ε |A0 : A0 → k is the reverse isomorphism

3. ker ε =
⊕∞

n=1An

4. for x ∈ ker ε, ∆(x) = 1⊗ x+ x⊗ 1 + ∆̃(x) where ∆̃(x) ∈ ker ε⊗ ker ε

Proof. (1) As u is a graded map, u(k) ⊆ A0 and dimk k = dimk A0 = 1.
Further, u is one-to-one since, if u(λ1) = u(λ2), we know that this behaves
as in Figure 5.

A0 k ⊗A0A0 ⊗ k

A0 ⊗A0A0 ⊗A0

u⊗ idid⊗ u
id

A0

··

Figure 5

Then, as (id⊗ u)(1⊗ λ1) = (id⊗ u)(1⊗ λ2), for i ∈ {1, 2}

(id⊗ u)(1⊗ λi) = (id⊗ u)(λi ⊗ 1)

= λi ⊗ 1,

and therefore λ1 = λ2.
(2) From (1), we know that Figure 6 holds. Thus, ε |A0 is the reverse

isomorphism.

k
id

u ε
A A0

k k
id

u ε

k
=⇒

Figure 6
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(3) As ε is a graded map but k exists only in degree zero,

ε

( ∞⊕
n=1

An

)
= 0

and by (2) nothing else maps to zero, so ker ε =
⊕∞

n=1An.
(4) Note Figure 7.

A⊗ k A k ⊗A

ε⊗ idid⊗ ε

A⊗A A⊗AA∆ ∆

idA

Figure 7

Take x ∈ ker ε by the right path through the diagram. Then,

∆(x) = λ1 ⊗
1

λ1
x+ j = 1⊗ x+ j

where j ∈ (ker ε) ⊗ A. Similarly, taking x ∈ ker ε by the left path through
the diagram,

∆(x) = x⊗ 1 + q

where q ∈ A⊗ ker ε. Thus,

∆(x) = x⊗ 1 + 1⊗ x+ ∆̃(x)

where ∆̃(x) ∈ ker ε⊗ ker ε.

Definition. Suppose A is a bialgebra and x ∈ A. If ∆(x) = 1⊗x+x⊗1 we
say that x is primitive. If ∆(x) = x ⊗ x we say that x is group-like. When
∆(x) = 1⊗x+x⊗1 + ∆̃(x), we say that 1⊗x+x⊗1 is the primitive part.

Combinatorially, u and ε are just two more ways of looking at C0 = {1}.

References: Victor Reiner’s notes, 1.1-1.3.
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