Math 821, Spring 2013, Lecture 1

Karen Yeats
(Scribe: Tain Crump)

January 15, 2013

Generating Functions

Definition. A combinatorial class C is a countable set with a size function
| -] : C = Z>¢ with the property that C,, = {a € C : |a] = n} is finite. We
will write ¢, = |Cy|.

Definition. Let C be a combinatorial class. The (ordinary) generating func-

tion is c(z) = Y .0 @1

Proposition 1. Let C be a combinatorial class. Then, c(x) =Y 7 cpa™.

Proof. c(x) =" .cc xlel = Yomto Y oeee, T = Yo" O

Example. Consider binary rooted trees with distinct left and right children
at each vertex. Lets say the size of a tree is the number of vertices. Call
this class T.

The generating function of this class is

T(x):Zx‘t|:1—|—a:—i—2x2+---.
teT

To build a generating function for this class, note that every non-empty tree
has the form shown in Figure 1. Then,

T(z) = Z 2l

teT
— 14+ Z LR
teT —e
=1+zx <Z xL|> (Z a:R|>
LeT ReT
=1+ 2T (x)?

Strictly speaking, what we are using here a bijection between 7 — € and
T xT. As T(z) = 1+ T(z)?, we may solve using the quadratic formula,

T(z) = /1 V2;1E_4"”. Checking the positive root, %xo(z) =14+0(1). The L

/0 i\

Figure 1

term immediately indicates that this is incorrect. Hence, we must take the
negative root; %‘f(x) = O(1). We choose our sign based on which has the
correct behaviour near zero.

Definition. If A(z) is a formal power series A(x) = Y a,z™, then [2"]A(z) =
.

Proposition 2. [z"](1 + z)" = (77;) _ r(r—l)(r—i)!...(r—n—i-l) for all real v and
non-negative n.

Example (Continued). From before, [2"|T(z) = [z"] (1”21;43‘"). Then,

R G

_ (_:)n. 2 (3 —1)"7'“@_”*1)
SR G R n('l e
e WOy @ ~2'T;f?n__4f§;2n =
-
- ‘% (2: - 12)'
It follows that
[T () = 50—) = (2:)

This is the n'® Catalan number.

Definition. Let A and B be combinatorial classes. We say that A and B
are combinatorially equivalent if a,, = b, for all n > 0.

Example. Consider paths beginning at (0, 0), ending at (n, 0), never strictly
below the z-axis, and built of (1,1)— and (1, —1)—steps. We call these Dyck
paths. The size of a Dyck path is the number of steps taken. An example of
such a path is shown in Figure 2. Let D denote this combinatorial class.

Figure 2

A Dyck path is either empty or it is built of some number of blocks of
the form shown in Figure 3. These blocks are highlighted in the previous
figure. Then,

D(z) =1+ 2*D(z) + 2*D(x)* + - --
= ix%D(a})k
k=0

o
1—22D(x)’

So, D(z) — 2?D(x)?> =1, or 1 — D(z) + 2?D(x)? = 0.

Dyck path

Figure 3

To compare with our previous example, recall 1 —T'(x) + 2T (x)? = 0 for
binary rooted trees. Hence, these are the same up to how we define size.
That is, [2%¥]D(z) = [z¥]T(z).

Another decomposition uses the first return to the x-axis, and writes a
non-empty Dyck path as in Figure 4. Then, D(z) = 1 + 22D(z)?, the same
equation.

Lemma 3. Let A and B be setsand f :A— B, g: B— A. If fog=1idp
and go f = 1ida, then f and g are both bijections.

Dyck path

Dyck path
(0,0) (n,0)

Figure 4

Proof. By symmetry it suffices to show f is a bijection. Suppose f(a;) =
f(az2) for aj,as € A. Then, a1 = g(f(a1)) = g(f(a2)) = a2, and hence f
is one-to-one. Now, take b € B. As f(g(b)) = b, f is onto. Hence, f is a
bijection. O

Example. We can use Lemma 3 to give a bijection between Dy, and T, for
all n > 0.

[The following was inserted after class by Dr. Yeats.]

In class today we tried to write down a bijection between binary rooted
trees and Dyck paths in an explicit nonrecursive way, but we accidentally
wrote down a different bijection, one between rooted (not necessarily binary)
trees counted by edges and Dyck paths.

Let’s use the same basic idea but actually get rooted trees.

Let D be the class of Dyck paths counted by length. Let T be the class
of binary rooted trees (with distinct left and right children at each vertex)
counted by number of vertices. Then from the generating functions we know

Dan| = [Tnl

Let
g: 7;1 — DQn

be defined as follows. If n = 0 then g(e) = e. Assume n > 0. Take ¢t € Ty,.
Since left and right are defined at each vertex, ¢t has a canonical embedding
in the plane. Fatten ¢ by a sufficiently small § and remove it from the plane.
Now we want to traverse the boundary of this hole in a counterclockwise
manner. Begin the traversal at the top above the root.

In this traversal we meet each vertex at most 3 times. We need some
vocabulary for these meetings. For a non-root vertex v with two nonempty
children, it will be met on the left as we approach from its parent, on the
bottom between its two children, and on the right as we return to its parent.
If the left child is empty, then the meeting on the left and on the bottom
are joined. Likewise if the right child is empty, and if the vertex is a leaf
then all the meetings are jointed into a single meeting.

Now build a path as follows: each time we meet a vertex on the left
(including our initial beginning at the root and whether or not this is joined
with another meeting) take a (1, 1)-step. Each time we meet a vertex on the
bottom (whether or not this is joined with another meeting) take a (1, —1)-
step. When a left and bottom meeting are joint put in the (1, 1)-step first
and then the (1, —1)-step. In particular, when we meet a leaf we take a
(1,1)-step immediately followed by a (1,—1) step.

This path is g(t). It is a Dyck path because we meet each vertex on the
left before we can meet it on the bottom; it is length 2n since each vertex
contributes 2 steps.

Let
f : Doy — Tn

be defined as follows. If n = 0 then f(e) = e. Assume n > 0. View the Dyck
path as a sequence w of steps, from left to right. Build a tree as follows.
Read w from left to right. On the first (1,1)-step build the root and call it
the current vertex. Each time we meet a (1, 1)-step

e build a new vertex w

e if the previous step was (1,1) then make w the right child for the
current vertex

e if the previous step was (1,—1) then make w the left child for the
current vertex

e call w the current vertex.
If we meet a (1, —1)-step, then

e if the current vertex is not marked, then mark this vertex and this
vertex remains the current vertex.

e if the current vertex is marked, then find the first ancestor v of the
current vertex which has no left child. Mark v and set the current
vertex to be v.

Now lets check this builds a binary rooted tree.

After each (1,1)-step the current vertex is a leaf, so if we are on a (1,1)-
step and the previous step was a (1,1)-step then the current vertex does
not have a right child, and so the construction in this case is valid. After a
(1, —1)-steps (provided that step was valid), the current vertex has no left

child, so if we are on a (1, 1)-step after a (1, —1)-step then the current vertex
does not have a left child so the construction in this case is valid.

For a vertex v, let m(v) be the number of unmarked ancestors of v with
no left child, including v itself.

After a given step, let ¢ be the new current vertex and d the previous
one. Then if the step was a (1,1) step we have m(c) = m(d) + 1 and if the
step was a (1, —1) step we have m(c) = m(d) — 1. Thus by the Dyck path
property at every (1, —1)-step there is at least one unmarked ancestor of the
current vertex with no left child (including the current vertex itself), and so
the construction is valid in this case also.

A nice picture probably makes this much clearer:

A NN

Try going through both maps, step by step, on this example to really see it.

Now we need to check fog =1id and go f = id. The key idea in both
directions is that building a vertex in the construction for f corresponds to
meeting the vertex on the left in the traversal for g, while marking a vertex
in the construction for f corresponds to meeting the vertex on the bottom
in the traversal for g. Since all of this is something of a digression anyway,
I'll leave the details to you.

[This ends the newly inserted material.]

Another construction; define a function h : Dy, — T, by h(e) = €, and
for non-empty Dyck paths as in Figure 5.

h(2l o) =

(D1) h(D3)

Figure 5

Similarly, define a function j : T, — Da, by j(€) = €, and for non-empty
trees as in Figure 6.

Figure 6

Some Combinatorial Constructions

Definition. Let ® be a map which takes any collection of m combinatorial
classes BY, B®) .. B(™ to a combinatorial class A = &(BM), B3), .. BM).
We say that ® is admissible if the sequence (a,)52, depends only on the
sequence (bg));ﬁfzo, vy (b,(lm))g’ozo.

So, this is a map on isomorphism classes under combinatorial isomor-
phism, and further there is (at least in principle) a map of generating func-
tions BM(z), BA (), ..., B (z) — A(x).

Definition. Let B and C be combinatorial classes, and define A = B x C to
be the combinatorial class with underlying set Bx C = {(b,c) : b € B,c € C}
and size function |(b, c)|4 = |b|s + |clc-

Proposition 4. Let B and C be combinatorial classes and let A = B x C.
Then, A(z) = B(z)C(x).

Proof. First,

A, ={(b,c) :be B,ceC,|bl+ |c| =n}

= [J{.c): b€ Br,c€Cri}

This union is disjoint, as the different terms have different sizes in the first
coordinate. So, an =Y ;_brcp— and

Alz) = Z_% (kz_o bkcn_k> 2" = B(z)C(z).

Note that the function x is admissible.

Notation. Use & for a combinatorial class with one element of size zero.
Use Z for a combinatorial class with one element of size one.
Use subscripts to distinguish between copies of £ and Z.

Note that £ x A is combinatorially isomorphic to A.

Definition. Let B and C be combinatorial classes, and define A = B+C to
be the combinatorial class with underlying set B+ C = (& x B) U (&2 x C)
and size function

‘b’Ba ifa= (glab)
lala = : :
lcle, if a = (&,¢)

Note that the function + is admissible.

Remark 1. The purpose of the union is to force disjointness. If we had
chosen A = BUC, then

an = |Ap| = |Bp| + |Cn| — [Bn NCy|
:bn+cn_‘8nﬂcn|7

which is not a function of b; and ¢; terms. Hence, this is definition is not
admissible.

Proposition 5. Let B and C be combinatorial classes and let A = B+ C.
Then, A(z) = B(z) + C(z).

Proof. As (&1 x B)N (& x C) =10,
|An] = [(E1 X B)n| + [(E2 X C)nl = |Bn| +[Cal.

Then, a, = by, + ¢, and hence A(x) = B(z) + C(z). O

References: Flajolet and Sedgewick, Analytic combinatorics, Cam-
bridge (2009). T1-12.

