Math 821, Spring 2013, Lecture 2

Karen Yeats
(Scribe: Mahdieh Malekian)

January 17, 2013

1 Generating Functions

Last time we defined $\mathcal{A}=\mathcal{B} \times \mathcal{C}, \mathcal{A}=\mathcal{B}+\mathcal{C}, \mathcal{E}, \mathcal{Z}$.
Notation. Let \mathcal{B} be a combinatorial class. Write $\mathcal{B}^{n}=\underbrace{\mathcal{B} \times \ldots \times \mathcal{B}}_{n \text { times }}$, for $n>0$, and $\mathcal{B}^{0}=\mathcal{E}$.

Definition. Let \mathcal{B} be a combinatorial class with $\mathcal{B}_{0}=\varnothing$. Define $\mathcal{A}=\operatorname{Seq}(\mathcal{B})$ to be the combinatorial class with underlying set $\bigcup_{n=0}^{\infty} \mathcal{B}^{n}$ (note that the union is disjoint), and the size function is defined as follows: Take $a \in \mathcal{A}$, then $a \in \mathcal{B}^{n}$, for some $n \geq 0$. Let $|a|_{\mathcal{A}}=|a|_{\mathcal{B}^{n}}$.

Another way to write this is to say that $\operatorname{Seq}(\mathcal{B})$ is combinatorically isomorphic to $\mathcal{E}+\mathcal{B}+\mathcal{B}^{2}+\ldots$, where \mathcal{E} is the empty sequence, \mathcal{B} sequence of length $1, \mathcal{B}^{2}$ sequence of length 2 , and so on, except that infinite combinatorial sum has not been defined (see above definition). So $\operatorname{Seq}(\mathcal{B})$ is the class of all finite sequences of elements of \mathcal{B}.

Note. Why did we require $\mathcal{B}_{0}=\varnothing$ in the definition above? Because if $\varepsilon \in \mathcal{B}_{0}$ then ()$,(\varepsilon),(\varepsilon, \varepsilon),(\varepsilon, \varepsilon, \varepsilon), \ldots$ are all elements of size 0 in $\operatorname{Seq}(\mathcal{B})$, so $\operatorname{Seq}(\mathcal{B})$ would not be a combinatorial class.

Proposition 1. Let \mathcal{B} be a combinatorial class with $\mathcal{B}_{0}=\varnothing$, and $\mathcal{A}=\operatorname{Seq}(\mathcal{B})$. Then $A(x)=1+B(x)+B(x)^{2}+B(x)^{3}+\ldots=\frac{1}{1-B(x)}$.

Note. The above infinite sum is a well-defined infinite sum of formal power series, since $\mathcal{B}_{0}=\varnothing$, so $b_{0}=0$, so $B(x)^{k}=b_{k}^{k} x^{k}+$ higher order terms, so to find

$$
\left[x^{n}\right]\left(1+B(x)+B(x)^{2}+\ldots\right)
$$

we only need the finite sum

$$
\left[x^{n}\right]\left(1+B(x)+\ldots+B(x)^{n}\right) .
$$

Proof of Proposition 1.

$$
\begin{aligned}
a_{n} & =\left|\mathcal{A}_{n}\right|=\left|\left(\bigcup_{i=0}^{n} \mathcal{B}^{i}\right)_{n}\right|, \text { since } \mathcal{B}_{0}=\varnothing \\
& =\left[x^{n}\right]\left(1+B(x)+\ldots+B(x)^{n}\right)=\left[x^{n}\right]\left(\frac{1}{1-B(x)}\right), \text { since } B(0)=0 .
\end{aligned}
$$

Example. Let \mathcal{D} be the class of Dyck Paths. Last time we saw the decomposition $\mathcal{D}=\operatorname{Seq}\left(\mathcal{Z}_{\nearrow} \times \mathcal{D} \times \mathcal{Z}_{\searrow}\right)$. So we can read right off this $D(x)=\frac{1}{1-x^{2} D(x)}$.

Example. Rooted plane trees A rooted plane tree could be ε, or

a sequence of children . Call the class of these trees \mathcal{P}, so $\mathcal{P}=\mathcal{E}+\mathcal{Z} \times \operatorname{Seq}(\mathcal{P}-\varepsilon)$, or for nonempty plane trees $\mathcal{N}, \mathcal{N}=\mathcal{Z} \times \operatorname{Seq}(\mathcal{N})$. And so immediately we obtain $P(x)=1+x \cdot \frac{1}{1-(P(x)-1)}=1+x \cdot \frac{1}{2-P(x)}$, or $N(x)=\frac{x}{1-N(x)}$.
Example. Binary strings $\quad \mathcal{B}=\operatorname{Seq}\left(\mathcal{Z}_{0}+\mathcal{Z}_{1}\right)$, so $B(x)=\frac{1}{1-2 x}$.
Example. Binary strings with no two consecutive 0s Such a string can be presented as $(\varepsilon+0)\left(1^{*} 10\right)^{*} 1^{*}$, so we have $\mathcal{B}=\left(\mathcal{E}+\mathcal{Z}_{0}\right) \times \operatorname{Seq}\left(\mathcal{Z}_{1} \times \operatorname{Seq}\left(\mathcal{Z}_{1}\right) \times\right.$ $\left.\mathcal{Z}_{0}\right) \times \operatorname{Seq}\left(\mathcal{Z}_{1}\right)$, therefore

$$
B(x)=(1+x)\left(\frac{1}{1-\left(\frac{x^{2}}{1-x}\right)}\right)\left(\frac{1}{1-x}\right)=\frac{1+x}{1-x-x^{2}}
$$

Example. Integers $\geq 1 \quad \mathcal{I}=\operatorname{Seq}(\mathcal{Z})$, so $I(x)=\frac{1}{1-x}$.

2 Polya Cycle Index Polynomials

Definition. Let S_{n} be the group of permutations of $\{1,2, \ldots, n\}$. A subgroup of S_{n} will be called a permutation group.

Proposition 2. Let $\sigma \in S_{n}$, then σ can be written uniquely as a product of disjoint cycles.

We can use cycle notation to represent permutations.
Example. (1 24 4)(35)

Definition. Let A be a permutation group on $\{1,2, \ldots, n\}$. For $\sigma \in S_{n}$ let $j_{k}(\sigma)$ be the number of cycles of length k in the disjoint cycle representation of σ. Then the cycle index polynomial of A in variables s_{1}, \ldots, s_{n} is $Z\left(A ; s_{1}, s_{2}, \ldots, s_{n}\right)=$ $\frac{1}{|A|} \sum_{\sigma \in A}\left(\prod_{k=1}^{n} s_{k}^{j_{k}(\sigma)}\right)$.

Example. $A=S_{3}=\left\{(1)(2)(3),(1)(23),(2)(13),(3)(12),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array} 2\right)\right\}$. So $Z\left(S_{3} ; s_{1}, s_{2}, s_{3}\right)=\frac{1}{6}\left(s_{1}^{3}+3 s_{1} s_{2}+2 s_{3}\right)$.

Definition. Let \mathcal{C} be a combinatorial class, and $X=\{1, \ldots, n\}$. Then \mathcal{C}^{X} is the combinatorial class whose underlying set is the set of functions $f: X \rightarrow \mathcal{C}$ with size function $|f|=\sum_{i=1}^{n}|f(i)|$, i.e \mathcal{C}^{X} is combinatorically isomorphic to \mathcal{C}^{n}.

If A is a permutation group on X, then \mathcal{C}^{X} / A is the combinatorial class whose underlying set is equivalence classes of elements of \mathcal{C}^{X} under the relation

$$
f_{1} \sim f_{2} \text { iff } \exists \sigma \in A \text { such that } f_{1} \circ \sigma=f_{2}
$$

Then $\left|f_{1}\right|=\left|f_{2}\right|$ in \mathcal{C}^{X}, so \mathcal{C}^{X} / A inherits this size function.
Theorem 3. Polya Enumeration Theorem
Let \mathcal{C} be a combinatorial class, $X=\{1, \ldots, n\}$, A be a permutation group on X, and $\mathcal{B}=\mathcal{C}^{X} / A$. Then $B(x)=Z\left(A ; C(x), C\left(x^{2}\right), \ldots, C\left(x^{n}\right)\right)$.

To prove the theorem first we need the following definition:
Definition. Let A be a permutation group on $X=\{1, \ldots, n\}$. For $x \in X$, the orbit of x is $\{y \in X: \exists \sigma \in A, \sigma x=y\}$.
Alternately view A as giving an equivalence relation on X via

$$
x \sim y \text { iff } \exists \sigma \in A, \sigma x=y
$$

then the orbits are the equivalence classes.
Proposition 4. Burnside's Lemma
let A be a permutation group on $X=\{1, \ldots, n\}$. Then the number of orbits of $A, N(A)$, is $N(A)=\frac{1}{|A|} \sum_{\sigma \in A} j_{1}(\sigma)$.
Note. This says that the number of orbits is the average number of fixed points.
Proof. For $x \in X$, let $\operatorname{Stab}_{A}(x)=\{\sigma \in A: \sigma x=x\}$ (the stabilizer of x). Let Y be an orbit of A, and take $y \in Y$. We have a bijection between Y and the cosets of $\operatorname{Stab}_{A}(y)$. To see this let $\sigma_{1} \operatorname{Stab}_{A}(y), \ldots, \sigma_{n} \operatorname{Stab}_{A}(y)$ be the cosets. Then the map

$$
\sigma_{i} \operatorname{Stab}_{A}(y) \longmapsto \sigma_{i}(y)
$$

is a bijection. The map is one-to-one, as if $\sigma_{i}(y)=\sigma_{j}(y)$ then $\sigma_{j}^{-1} \sigma_{i}(y)=y$, so $\sigma_{j}^{-1} \sigma_{i} \in \operatorname{Stab}_{A}(y)$, so σ_{i} and σ_{j} are in the same coset. The map is also onto, as for any $u \in Y$ there is an $\alpha \in A, \alpha y=u$. But the union of the cosets is A, so $\alpha=\sigma_{i} \alpha^{\prime}$, so $\sigma_{i}(y)=\sigma_{i}\left(\alpha^{\prime} y\right)=\alpha y=u$, since $\alpha^{\prime} \in \operatorname{Stab}_{A}(y)$.

Now just count. From the bijection we know that

$$
\begin{equation*}
\left|\operatorname{Stab}_{A}(y)\right||Y|=|A| \tag{*}
\end{equation*}
$$

Now sum this over all the orbits $X_{1}, \ldots, X_{N(A)}$:

$$
\sum_{i=1}^{N(A)}\left|\operatorname{Stab}_{A}\left(x_{i}\right)\right|\left|X_{i}\right|=N(A)|A|, \text { where } x_{i} \in X_{i}
$$

Note that if x and y are in the same orbit then $\left|\operatorname{Stab}_{A}(x)\right|=\left|\operatorname{Stab}_{A}(y)\right|$, because of (*). So

$$
\begin{aligned}
N(A)|A| & =\sum_{i=1}^{N(A)}\left|\operatorname{Stab}_{A}\left(x_{i}\right)\right|\left|X_{i}\right| \\
& =\sum_{x \in X}\left|\operatorname{Stab}_{A}(x)\right| \\
& =\sum_{x \in X} \sum_{\sigma \in \operatorname{Stab}_{A}(x)} 1 \\
& =\sum_{\sigma \in A} \sum_{\substack{x \in X \\
\sigma x=x}} 1 \\
& =\sum_{\sigma \in A} j_{1}(\sigma)
\end{aligned}
$$

Proof (of Polya enumeration theorem). Let $b_{k}(\alpha)=\mid\left\{b \in \mathcal{C}^{X}:|b|=k, b \circ \alpha=\right.$ $b\} \mid$. Then Burnside's lemma says $b_{k}=\frac{1}{|A|} \sum_{\sigma \in A} b_{k}(\sigma)$, so

$$
\begin{aligned}
B(x) & =\sum_{k=0}^{\infty} \frac{1}{|A|} \sum_{\sigma \in A} b_{k}(\sigma) x^{k} \\
& =\frac{1}{|A|} \sum_{\sigma \in A} \sum_{k=0}^{\infty} b_{k}(\sigma) x^{k}
\end{aligned}
$$

where $\sum_{k=0}^{\infty} b_{k}(\sigma) x^{k}$ is the generating function for elements of \mathcal{C}^{X} fixed by σ. Let b be such an element, i.e an element of \mathcal{C}^{X} with $b \circ \sigma=b$. Then $b(i)$ is constant for all i in any given cycle of σ. So

$$
\begin{aligned}
\sum_{k=0}^{\infty} b_{k}(\sigma) x^{k} & =\prod_{\substack{\text { cycles } \alpha \\
\text { in } \sigma}}\left(\sum_{i=1}^{\infty} c_{i} x^{|\alpha| i}\right) \\
& =\prod_{k=1}^{n}\left(\sum_{i=1}^{\infty} c_{i} x^{k_{i}}\right)^{j_{k}(\sigma)} \\
& =\prod_{k=1}^{n} C\left(x^{k}\right)^{j_{k}(\sigma)}
\end{aligned}
$$

So

$$
\begin{aligned}
B(x) & =\frac{1}{|A|} \sum_{\sigma \in A} \prod_{k=1}^{n} C\left(x^{k}\right)^{j_{k}(\sigma)} \\
& =Z\left(A ; C(x), C\left(x^{2}\right), \ldots, C\left(x^{n}\right)\right) .
\end{aligned}
$$

Example. Binary necklaces
Let \mathcal{N} be the combinatorial class of cycles as graphs with two colours of vertices.

First consider size 4:

$$
\mathcal{N}_{4}=\left(\mathcal{Z}_{\circ}+\mathcal{Z}_{\bullet}\right)^{\{1,2,3,4\}} / D_{4}
$$

where D_{n} is the Dihedral group of order n. Note that if we do not allow flipping then we would have $\left(\mathcal{Z}_{\circ}+\mathcal{Z}_{\bullet}\right)^{\{1,2,3,4\}} / C_{4}$, where C_{n} is the cyclic group of order n.

$$
\begin{aligned}
D_{4}=\{ & (1)(2)(3)(4),(1)(3)(24),(2)(4)(13)\} \\
& (12)(34),(13)(24),(14)(23),(1234),(1432)\}
\end{aligned}
$$

So

$$
\begin{aligned}
N_{4}(x) & =Z\left(D_{4} ; 2 x, 2 x^{2}, 2 x^{3}, 2 x^{4}\right) \\
& =\frac{1}{8}\left((2 x)^{4}+2(2 x)^{2}\left(2 x^{2}\right)+3\left(2 x^{2}\right)^{2}+2\left(2 x^{4}\right)\right)
\end{aligned}
$$

References. Harary, F. and Palmer, E. M. , Graphical Enumeration, Academic Press (1973). Ch. 2.

