
MOTIVES ASSOCIATED TO GRAPHS

SPENCER BLOCH

Abstract. A report on recent results and outstanding problems
concerning motives associated to graphs.

1. Introduction

The theory of Feynman diagrams as a way to write series expansions
for perturbations of Gaussian integrals is by now old enough to be
classical. (Classical in mathematics can be defined to be that which has
fallen off the active shelves of your neighborhood mathematical library
and is stored somewhere “below stairs”. It varies as a function of the
library.) And yet, somehow, the subject remains an active one. Why
is this? Physicists, as Dirk Kreimer never tires of telling me, actually
need in their experiments the numbers which the theory produces. (As
far as I can tell, a particle in physics is basically a particularly sweet
array of Feynman diagrams.) For mathematicians, it has become clear
in the finite dimensional case that rewriting a Gaussian type integral as
a sum over graphs is a profound reworking of the basic mathematical
object which can yield deep and surprising insights.

The infinite dimensional case, which is the inspiration for this pa-
per, is mathematically more mysterious. As an algebraic geometer
interested in motives, the author was attracted by the results of Broad-
hurst and Kreimer [BK1], [BK2] who showed that in numerous cases,
the Feynman amplitudes which are periods in the motivic sense and
which give the coefficients of the perturbative series, are multiple zeta
numbers. The Feynman procedure yields integrals over Pn(R) with an
algebraic integrand whose denominator is a product of quadrics. Us-
ing a trick of Schwinger, this integral is rewritten as an integral over
a simplex where the integrand involves the classical graph polynomial
associated to the particular graph. It is clear from op. cit. that the
central case of interest is the case of a logarithmically divergent graph
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Γ, where the number 2n of edges is twice the loop number: n = h1(Γ).
In this case the Schwinger integral is

(1.1)

∫

σ

Ω

Ψ2

where σ is the simplex in projective space Pn, Ω =
∑2n

1 (−1)iAidA1 ∧
. . . d̂Ai . . . dA2n is the top degree form of homogeneous degree the num-
ber of edges and Ψ is the graph polynomial, which is homogeneous of
degree equal to the loop number.

So, roughly speaking, the geometry we need to understand is the
geometry of a pair (P2n−1 − X,∆), where X : Ψ = 0 is the graph
hypersurface, and ∆ :

∏2n
i=1Ai = 0 is the coordinate simplex. Here

σ = {(a1, . . . , a2n) | ai ≥ 0}, so the boundary of the chain σ is supported
on ∆. The combinatorics of the intersection σ ∩ X is the main focus
of our effort. The basic geometry is described in Section 6. In Sections
7 and 8 we describe the differential Hopf algebra in the category of
motives which encodes this geometry. The key idea is Proposition 6.3
which describes the normal cone to a coordinate linear space contained
in the graph hypersurface X. By way of example, in Section 9 we give
some details for the example of the wheel with three spokes. finally,
in Section 10 we discuss the problem of renormalization. From our
geometric viewpoint, renormalization is necessary when the integrand
in (1.1) acquires poles along some exceptional divisors when we blow
up faces of ∆.

The reader will discover that, in fact, there is precious little in these
notes about multiple zeta numbers and Feynman amplitudes. Instead,
the focus is on the Hopf algebra properties of the motivic construction.
In truth, the relationship between graphs and multiple zeta numbers
is still completely unclear.

This is intended to be an expository account, so I have tried to
structure things so the material grows increasingly technical toward the
end of the paper. Sections 2 and 3 are sort of standard attempts to go
back to the roots and see where the graphs come in. Section 4 exposes
the linear algebra of the graph polynomial. Of interest here is the
unified treatment of the graph polynomial and the canonical quadratic
form R (cf. Proposition 4.4) on the space of external momenta. The
idea is that the ultimate period formula (5.5) which involves both the
graph polynomial and external momenta should be seen as a natural
consequence of the basic linear algebra. (By the way, I learned formula
(5.5) from the book [IZ]. Although perhaps a bit “long in the tooth”
now for physicists, this book is excellent.)
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This paper is based on my work with H. Esnault and D. Kreimer,
[BEK]. That they do not appear as co-authors is based on constraints
on collaboration imposed by time and distance (well understood con-
cepts in physics). I would also like to acknowledge helpful correspon-
dence with K. Yeats.

What follows is not a survey. I lack the depth of knowledge to
do a good survey. Were I to try, I would include some of the original
calculations in [BK1], [BK2], the work of Connes-Kreimer [CK1], [CK2]
as well as the more recent work of Connes-Marcolli [CM]. Certainly
the work of Brosnan-Belkale [BB] showing that the full motive of graph
hypersurfaces is not in general mixed Tate should be discussed. Finally,
I would also include an account of the paper of Goncharov-Manin on
multiple zeta numbers arising from motives on the moduli space of
stable n-pointed curves of genus 0 [GM], as well as the recent thesis of
F. Brown on the same subject [Br]. Unlike the case of graphs where the
picture is still mysterious, the genus 0 moduli story is quite complete.

Finally an apology for my totally imprecise use of the word “mo-
tive”. Because of technical problems associated with defining motives
for cohomology groups of open and singular varieties, It would really
be better to work systematically with Hodge structures. Indeed, in
sections 9 and 10 I do this. However, the spirit of this program is mo-
tivic. Multiple zeta numbers are motivic. The name of the game is to
construct geometric objects associated to graphs, not just Hodge struc-
tures. The theory of motives was intended as a tool to study concrete
geometric and arithmetic objects, so I have kept the term.

2. Perturbed Gaussian Integration

The origin of our subject, the moment, so to speak, the physical
Dorothy enters the mathematical land of Oz, is possible to identify with
some precision; and it seems worthwhile to say a few words about this.
I follow [P] and [IZ]. The Feynman graph method in finite dimensions
grows from an attempt to calculate an integral of the form

(2.1) ZU :=

∫

Rd

exp(
−1

2
〈Ax, x〉+ hU(x))dx.

Here A is a positive-definite symmetric d × d matrix over R, h is a
parameter, and we do not worry too much about convergence. We
write Z0 for the Gaussian integral, U = 0.

As inputs to our calculation, we use two formal algebraic results. Let
f1, . . . , fm be polynomial functions on Rd. The correlation function is
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defined by

(2.2) 〈f1, . . . , fm〉 := Z−1
0

∫

Rd

exp(
−1

2
〈Ax, x〉)f1(x) · · · fm(x)dx.

A standard Gaussian integral calculation yields

(2.3) 〈f1, . . . , fm〉 = f1(
∂

∂b
) · · · fm(

∂

∂b
) exp(

1

2
〈b, A−1b〉)

∣∣∣
b=0
.

The second formal calculation, Wick’s theorem, says
(2.4)

∂i1 · · · ∂im exp(
1

2
〈b, A−1b〉)

∣∣∣
b=0

=

{
0 m odd∑
Aj1j2 · · ·Ajm−1jm m = 2r even

Here A−1 = (Aij), and the above sum is over all partitions into subsets
with two elements

{i1, . . . , im} = {j1, j2} q . . .q {jm−1, jm}.
(Confusing point: It is important to distinguish between decomposi-
tions and partitions of a set. A partition should be thought of as an
equivalence relation. {12}{34} and {43}{12} are the same partition of
{1234} into two subsets with 2 elements but different decompositions.
For m = 2r, each partition corresponds to r!2r decompositions. Wick’s
theorem can be restated by inserting 1

r!2r on the right and summing
over decompositions.)

Formally, at least, our integral can be written

(2.5) ZU/Z0 = ehU( ∂
∂b

)e
1
2
〈b,A−1b〉

∣∣∣
b=0
.

Suppose for simplicity that U =
∑

I UIx
I is a homogeneous polynomial

of degree p > 2. If we isolate the terms of degree n in h, we are led to
apply Wick’s theorem to expressions like

(2.6)
1

n!

∑
I1,...,In

UI1 · · ·UIn

∂I1+...+In

∂bI1+...+In

e
1
2
〈b,A−1b〉

∣∣∣
b=0

=

1

n!

∑
I

UI1 · · ·UIn

∑

I={j1,j2}q...q{jnp−1,jnp}
Aj1j2 · · ·Ajnp−1jnp .

(I := I1 q . . .q In, with np assumed even.)
This is where graphs appear, and it is important to be precise, be-

cause confusion is possible. (As mathematicians, clarity and precision
are part of our “mission civilisatrice”.) A graph is determined by a
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finite set HE, (the set of 1/2-edges) together with two equivalence
conditions, with quotients denoted V (vertices) and E (edges).

(2.7) V ´ HE ³ E

We further suppose the equivalence classes in E each have 2 elements.
An automorphism of a graph is a σ ∈ Aut(HE) such that there exist
isomorphisms σE : E ∼= E, σV : V ∼= V making the diagram

(2.8)

V ←−−− HE −−−→ EyσV

yσ

yσE

V ←−−− HE −−−→ E

Commute.
We write |Γ| for the order of the group of automorphisms of the

graph Γ and |Γ| for the number of vertices.
We will consider graphs labeled by the set {1, . . . , d}, which simply

means we are given a mapping

(2.9) ` : HE → {1, . . . , d}.
The basic result is

Theorem 2.1. We have the formal expansion

(2.10) ZU/Z0 =
∑

Γ

h|Γ|

|Aut(Γ)|
∑

HE(Γ)
`−→{1,...,d}

∏
v vertex

U`(v)

∏

e edge

A`(e)

Here `(v) and `(e) are the evident sets of indices.

3. Infinite Dimensions

The effect of introducing graphs is to reduce an integral (2.1) to a
sum (2.10). One approach to QFT starts with an infinite dimensional
analogue of the perturbed gaussian integral (2.1). The perturbative
expansion (2.10) now involves integration rather than summation, but
the integrals in question are finite dimensional. In place of Rd one takes
some infinite dimensional space of fields φ. (Think of φ as lying in some
space of smooth functions on R4 with rapid decay.) In place of the
symmetric matrix A, one typically takes the Klein-Gordon differential
operator

(3.1) K = −∂2/∂x2
1 − ∂2/∂x2

2 − ∂2/∂x2
3 + ∂2/∂x2

0 +m2

In φ4-theory, the perturbation term is

(3.2) U(φ) :=

∫

R4

φ4dx1 . . . dx4.
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Finally, the set of labels {1, . . . , d} is replaced by the whole of R4.
That is, x ∈ R4 defines a functional φ 7→ φ(x) in much the same way
that i ∈ {1, . . . , d} defines a functional (x1, . . . , xd) 7→ xi on Rd. The
integral becomes

(3.3) ZU =

∫
Dφ exp(

−1

2
〈Kφ, φ〉+ hU(φ))

(I’ve put the −1/2 to stress the parallel with (2.1). Typically in physics
the coefficient is

√−1/2. Physicists refer to integrals like this as path
integrals I suppose because in QED they are integrating over a space of
paths. Whatever one calls it, it is more of a metaphor than an actual
integral.)

The coordinates Aij for the inverse symmetric matrix in the finite
dimensional case are replaced by the Green’s function G(x, y) associ-
ated to the operator K. This is a right inverse for K, which means
that, as a distribution, it satisfies

(3.4) KxG(x, y) = −δ4(x− y)
Fourier theory yields

(3.5) G(x, y) = G(x− y) =
1

(2π)4

∫
dk4 e

−ik·(x−y)

k2 +m2

Here x, y, k are 4-vectors, and k2 := k ·k. Note we have “Wick rotated”,
multiplying by

√−1 to avoid the awkward indefinite quadratic form.
We see from this that G is translation-invariant. (k is momentum.)

Formally, the finite dimensional perturbation term
∑
UIx

I is re-
placed by

(3.6) “
∑

R4

x4 ”

If we replace the sum in (2.10) by an integral, we are led to multiply
integrals (3.5), one for each edge, and then integrate out the position
variables. But from (3.6) there is one position variable for each vertex.
If we (again formally) bring the position integration inside the momen-
tum integrals (3.5) we end up first with an integral for each vertex of
the form

(3.7)

∫

R4

exp(x ·
∑
±pj)dx

where the pj are the momentum variables corresponding to the edges
meeting the given vertex, and the signs occur because of the +x − y.
This integral gives the delta function for the hyperplane

∑±pj = 0.
Next we have an outer integral over the product of all the integrands
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1
p2

j+m2 . To simplify, we set the mass m = 0. Our final integral has the

p2
j in the denominator and has one δ function for each vertex.

Example 3.1. Take Γ to be the graph given by the edges of a tetrahe-
dron. It has 6 edges and 4 vertices. Suitably labeled, the 4 relations
become

(3.8) p1 + p2 + p3 = 0; p1 = p6 − p5; p2 = p4 − p6; p3 = p5 − p4

(Note there is one relation among the 4.) The integral becomes

(3.9)

∫

R12

d12p

p2
4p

2
5p

2
6(p6 − p5)2(p6 − p4)2(p5 − p4)2

Sadly, this diverges. The physicist, however, looks at the corresponding
projective integral over P11 which is viewed as a residue. The value is
an elementary multiple of ζ(3).

To fix ideas, in the sequel when we talk about periods, we will usually
have in mind a connected graph Γ with n loops and 2n edges. Such
a graph is said to be log divergent. Just as in the above example, this
leads to a projective integral of the form
(3.10)

Per(q) :=

∫

P4n−1(R)

Ω4n−1

q1 · · · q2n

; Ω =
4n∑
1

(−1)i−1ZidZ1 . . . d̂Zi . . . dZ4n.

Here the qi are quadrics in Z1, . . . , Z4n. Indeed, if we look at the ho-
mology sequence

(3.11) 0→ H1(Γ,Z)→ Z[E(Γ)]→ Z[V (Γ)]→ H0(Γ)→ 0

where E(Γ) and V (Γ) are the edges and vertices, we see that Γ has
n + 1 vertices. We start with 2n copies of R4, one for each edge. We
have n + 1 δ-functions, but there is one relation amongst them. Since
each δ-function drops the dimension by 4, we end up with R4n. The
integrand is homogeneous, and we consider the projective integral.

We will discuss more general Feynman amplitudes in the context of
external momenta in section 5.

4. Some Linear Algebra

In this section, we assume our graph Γ is connected, with h1(Γ) = n
and #E(Γ) = m. We truncate the exact sequence (3.11) of homology
and define W by the sequence

(4.1) 0→ H → Z[E(Γ)]→ W → 0
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Definition 4.1. The momentum space associated to Γ is the space W .
In other words, the momentum space is the group of formal sums of
vertices of degree 0. (Of course, we may want to tensor with R or C.)

The group Z[E(Γ)] is canonically self-dual simply by taking the dual
basis to the basis given by edges e ∈ E. The functionals e∨ for e ∈ E
define linear forms by restriction on H. We view the squares of these
functions (e∨)2 : H → Z as rank 1 quadrics on H. If we choose a basis
of H we can associate a rank 1 symmetric matrix Ne to (e∨)2.

Definition 4.2. The Graph Polynomial

(4.2) ΨΓ := ΨH = det(
∑
e∈E

AeNe)

Note that this definition is independent of the choice of basis of H.
Moreover, it would make sense for any subgroup H ⊂ Z[E], i.e. it
depends only on the configuration defined by H ⊂ Z[E], not on the
graph. For example, we may dualize and define a polynomial ΨW∨

associated to W∨ ⊂ Z[E]∨ ∼= Z[E]. It is easy to see (cf. [BEK], Prop.
1.6) that

(4.3) ΨH(A) =
( ∏

e∈E

Ae

)
ΨW∨(. . . , A−1

e , . . .)

ΨH and ΨW∨ are determinants of symmetric matrices NH and NW∨ of
sizes n × n and (m − n) × (m − n) respectively. Both matrices have
entries linear in the Ae. We assume the determinants of these matrices
are not identically 0, and we consider the inverse

(4.4) NW∨(A−1)−1 = (bij)1≤i,j≤n−m

It is easy to check using (4.3) that bij = cij/ΨH , where cij is a
homogeneous polynomial in the Ae of degree n + 1. In particular, the
matrix (4.4) has entries homogeneous of degree 1 in the Ae.

The following is standard linear algebra.

Lemma 4.3. Let q be a non-degenerate symmetric quadratic form on
a vector space V over Q. Let M be the invertible matrix representing
q with respect to some basis ν of V . Let q∨ denote the quadratic form
on V ∨ represented by M−1 with respect to the dual basis ν∨. Then q∨

is canonically defined independent of the choice of basis ν.

For simplicity we now tensor with Q and write W := Q[V ]0 =
{∑nivi |

∑
ni = 0}.

Proposition 4.4. The momentum space W of our graph has a canon-
ical quadratic form R(w1, w2) with coefficients rational functions in the
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Ae. For a suitable choice of basis, this quadratic form is given by the
symmetric matrix (4.4).

We will see that the graph motive is independent of external mo-
menta, but the period varies as a function of momenta.

Although ΨH is defined for any H ⊂ Q[E], it has a particularly
nice description when H = H1(Γ) for a graph Γ. A spanning tree
T ⊂ Γ for a connected graph Γ is a connected and simply connected
subgraph T ⊂ Γ containing every vertex of Γ. (When Γ itself is not
connected, it is convenient to define a spanning tree to be the disjoint
union of spanning trees in every connected component.) The following
is classical (cf. [BEK], Prop. 2.2)

Proposition 4.5. With notation as above

(4.5) ΨΓ(A) =
∑
T⊂Γ

∏

e 6∈T

Ae.

Here the sum is over all spanning trees T ⊂ Γ.

One last amusing point concerning the linear algebra of the graph
polynomial: we can put metrics on the spaces of chains Q[E(Γ)] and
Q[V (Γ)] and define the graph laplacian to be dd∗:

(4.6) Q[V ]0 ⊂ Q[V ]
d∗−→ Q[E]

d−→ Q[V ]0 ⊂ Q[V ].

Suppose our metrics are such that 〈vi, vj〉 = δij and 〈ei, ej〉 = Ai · δij.
Write dej =

∑
i aijvi. Then d∗vi =

∑
j aijA

−1
j ej and

(4.7) dd∗(vi) =
∑

j,k

aijA
−1
j akjvk.

On the other hand, the matrix N−1
W∨(A−1) above is obtained as follows.

to each ej we associate the functional Q[V ]∨ → Q given by
∑

i aijvi.
The quadratic form associated to the square of this functional is

(4.8) 〈vµ, vν〉 = aµjaνj

and the full matrix has (µ, ν)-entry
∑

j A
−1
j aµjaνj. Comparing with

(4.7) and (4.3) we conclude:

Proposition 4.6. ΨΓ =
∏

eAe ·detLaplacianA(Γ), where the notation
means that the Laplacian is computed in the metric where each edge e
has length Ae.
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5. The Schwinger Trick

The integral (3.11) looks like a period (i.e. the integral of an alge-
braic differential form over an homology cycle), but one does not see
clearly the role of the graph Γ. Ultimately, we would like to relate
the combinatorics of the graphs to the periods, so it is convenient to
change the form of the period using the Schwinger trick.

Concretely, the Schwinger trick amounts to manipulating the integral
(3.10) using the evident integral

(5.1)

∫ ∞

0

exp(q(Z)t)dt = 1/q(Z).

I wont give the details (for a clear presentation, cf. [IZ], section 6-2-3),
but let me say a few words about the final shape of the formula. Drop,
for a moment, our assumption that the graph Γ is log divergent and
simply assume in (3.10) that h1(Γ) = n and #E(Γ) = m. Let Mi be
the 4n× 4n symmetric matrix associated to the quadric qi. Note that
Mi = Ni ⊗ I4, where I4 is the 4 × 4 identity matrix and Ni is n × n
symmetric. Define

(5.2) N :=
m∑
1

AiNi; Ψ = ΨΓ := det(N).

The Schwinger parametrization leads to an integral of the form (to
simplify, I have taken all masses = 0. I have also done a Wick rotation
to replace i in the exponential with −1.):

(5.3) IΓ(P ) =
1

(16π2)n

∫

[0,∞]m

exp(−P (N−1)tP )

Ψ2
Γ

dA1 . . . dAm

The change of variable Ai = λBi yields (with R(P, P ) as in Proposition
4.4 )
(5.4)

IΓ(P ) =
1

(16π2)n

∫

Ai≥0,
P

Ai=1

Ω

Ψ2

∫ ∞

λ=0

exp(−λR(P, P ))λm−1−2ndλ.

To conclude, if we assume that R(P, P ) > 0 we can make the change of
variable ν = λR(P, P ). Let σ = {(A1, . . . , Am) | Ai ≥ 0} ⊂ Pm−1(R).
We can rewrite our integral (Note Γ here is both the graph and the
Gamma function. My apologies...)

(5.5) IΓ(P ) =
1

(16π2)n

∫

σ

R(P, P )2n−mΩ

Ψ2

∫ ∞

ν=0

exp(−ν)νm−2ndν/ν =

Γ(2n−m)

(4π)2n

∫

σ

R(P, P )2n−mΩ

Ψ2
=

Γ(2n−m)

(4π)2n

∫

σ

ω(P )
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Our strategy will be to define the motive of the graph Γ to be

(5.6) M(Γ) := Hm−1(Pm−1 −XΓ,Q(m− 1)).

Since the entries of the quadratic form R are rational functions in the
Ae with denominator Ψ, we see that in the convergent case 2n > m,
ω(P ) in (5.5) is a family of forms parametrized by external momen-
tum P representing classes in the de Rham cohomology of the motive.
Although I do not pursue it here, it seems that a similar phenomenon
occurs, e.g. when working in non-scalar theories. The motive remains
Hm−1(Pm−1 − XΓ) depending only on the graph, but the period can
vary.

In the log divergent case m = 2n or the divergent case 2n < m, the Γ
factor in (5.5) contributes a pole, so the Feynman amplitude diverges,
but we can still try to make sense of the residue term represented by
ω(P ). Note that in the log divergent case, ω = ω(P ) does not depend
on external momenta. In the pure divergent case, ω(P ) has a factor
other than a power of Ψ in the denominator, so it does not represent a
class in the de Rham cohomology of the motive.

Finally, we take a minute to consider the log divergent case m = 2n
from an algebro-geometric viewpoint. Let Q : A1q1 + . . .+ A2nq2n = 0
be the universal quadric in the family spanned by the qi, 1 ≤ i ≤ 2n:

(5.7)

Q r−−−→ P4n−1

yp

P2n−1

The fibres of r are hyperplanes in P2n−1 except along the locus q1 =
. . . = q2n = 0, where they jump to the whole of P2n−1. Vertically, p is a
bundle of quadrics which degenerates over the zeroes of Φ(A1, . . . , A2n) :=
det(A1M1 + . . .+A2nM2n). Here Mi is the 4n× 4n symmetric matrix
associated to the quadric qi. One shows ([BEK], section 6) for some
c ∈ Q×
(5.8)

Per(q) =
c

π2n

∫

σ

Ω2n−1(A)√
Φ

; σ = {(a1, . . . , a2n) ∈ P2n−1(R) | ai ≥ 0}

But in our case, the symmetric matrices all have the form Mi =
Ni ⊗ I4, where I4 is the matrix for x2

1 + . . . + x2
4. Thus Φ = Ψ4 for a

suitable Ψ homogeneous of degree n , and we obtain

(5.9) Per(Γ) := Per(q) =
c

π2n

∫

σ

Ω2n−1(A)

Ψ2
; c ∈ Q×.
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In the log divergent case, we will write

(5.10) ωΓ :=
Ω2n−1(A)

Ψ2
.

6. Combinatorial Structure of the Graph Hypersurface

Clearly, to be able to say something about the period (5.9), we must
know more about the hypersurface

(6.1) X = XΓ : Ψ = 0.

In this section we focus on the combinatorial aspect of the situation.
We continue to assume Γ has m edges and h1(Γ) = n. Notice that
even when m ≤ 2n so ω(P ) ∈M(Γ)DR, we cannot say that our period∫

σ
R(P,P )Ω

Ψ2 is convergent, because the chain σ can meet the polar locus
XΓ. Recall σ is the set of points in Pm−1 which can be represented in
terms of the homogeneous coordinates Ae with all entries real and non-
negative. Since our graph polynomial is a sum of terms with coefficient
+1 (Proposition 4.5) we conclude

Lemma 6.1. σ ∩ XΓ =
⋃

L σL where L runs through all coordinate
linear spaces L : Ae1 = . . . = Lep = 0 such that L ⊂ XΓ, and σL =
σ ∩ L(R).

The following is a simple combinatorial exercise ([BEK], Prop. 3.1)

Lemma 6.2. A coordinate linear space L : Ae1 = . . . = Aep = 0 is
contained in XΓ if and only if the union of the edges e1∪. . .∪ep supports
a loop (i.e. writing ΓL for this subgraph (including all endpoints of the
ei), we have h1(ΓL) > 0.

Combining these two lemmas, we get a nice combinatorial description
of σ ∩XΓ:

(6.2) σ ∩XΓ =
⋃

L:h1(ΓL)>0

σL.

The idea will be to blow up L ⊂ XΓ in Pm−1 and study the strict
transform of XΓ in the blowup. The key point is

Proposition 6.3 ([BEK], Prop. 3.5). Let Γ′ ⊂ Γ be a subgraph, and
assume h1(Γ

′) > 0. Define the modified quotient graph Γ//Γ′ to be
the graph obtained from Γ by contracting each connected component
of Γ′ to a point. (Do not identify the points associated to different
connected components.) We have Edge(Γ) = Edge(Γ′)qEdge(Γ//Γ′).
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Suppose edge variables A1, . . . , Ar are associated to Γ′ and Ar+1, . . . , Am

to Γ//Γ′. Then the graph polynomials satisfy

(6.3) ΨΓ = ΨΓ′(A1, . . . , Ar) ·ΨΓ//Γ′(Ar+1, . . . , Am) + F (A1, . . . , Am)

where the degree of F in A1, . . . , Ar is strictly greater than the degree
of ΨΓ′ (= h1(Γ

′)).

This result can be interpreted geometrically as follows. Let L = LΓ :
A1 = . . . = Ar = 0. By assumption h1(Γ

′) > 0 so from Lemma 6.2 we
have L ⊂ XΓ. Let π : P → Pm−1 be the blowup of Pm−1 along L, and
let E, Y ⊂ P be the exceptional divisor and the strict transform of XΓ,
respectively. We have the diagram

(6.4)

E
⊂−−−→ P

⊃←−−− Yy
yπ

y
L

⊂−−−→ Pm−1 ⊃←−−− XΓ.

The normal bundle to L in Pm−1 is OL(1)r, so

(6.5) E ∼= P(NL/Pm−1) ∼= L× Pr−1

with homogeneous coordinates Ai, i = 1, . . . , r on Pr−1 naturally as-
sociated to the coordinates A1, . . . , Ar vanishing on L. Proposition 6.3
can be interpreted as saying

Y ∩ E = (XΓ//Γ′ × Pr−1) ∪ (L×XΓ′)(6.6)

E − Y ∩ E = (L−XΓ//Γ′)× (Pr−1 −XΓ′).

In this way, blowing up cordinate linear spaces in XΓ is linked to
subgraphs Γ′ ⊂ Γ with h1(Γ

′) > 0. We shall also need to think about
subgraphs Γ′ ⊂ Γ (Forests) where h1(Γ

′) = 0. Again let L : A1 = . . . =
Ar = 0 be the coordinate linear space. In this case, the result is

(6.7) L ∩XΓ = XΓ//Γ′ ⊂ L ∼= Pm−r−1

Example 6.4. Let Γ′ = e be a single edge with corresponding variable
A1. If e meets two distinct vertices, then XΓ ∩ {A1 = 0} = XΓ/e. If
e is a loop (tadpole in physics lingo, I guess because physicists would
tend to have an external edge attached to the sole vertex) then the
hyperplane {A1 = 0} ⊂ XΓ (so XΓ is reducible). In this case, XΓ/e is
identified with the intersection of {A1 = 0} with the other component
of XΓ.
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7. The Motive

We have defined (5.6) the motive M(Γ) = Hm−1(Pm−1−XΓ,Q(m−
1)). In truth, however, this is just a building block for the motivic
theory. When we want to talk about the period (5.9), we have to work
relative to the simplex ∆ :

∏
Ai = 0 ⊂ Pm−1 in order for our chain

σ to be an homology cycle. We are thus led to the relative motive or
relative cohomology

(7.1) Hm−1(Pm−1 −XΓ,∆−∆ ∩XΓ).

Note that the faces of ∆ are the coordinate linear spaces L as above.
For such an L : Ae1 = . . . = Aep = 0, let ΓL = e1 ∪ . . . ∪ ep ⊂ Γ. We
have seen that L ∩XΓ is proper iff h1(ΓL) = 0, in which case

(7.2) XΓ ∩ L ∼= XΓ//ΓL
.

Conversely, those faces contained in XΓ correspond to subgraphs with
h1 > 0. These have to be blown up. If we just blow up one L (would
that life were so simple), the picture becomes as in (6.4). Our new
candidate for the relative motive would be

(7.3) Hm−1(P − Y,B − Y ∩B,Q(m− 1)); B = π∗(∆)

We have added a new codim. 1 face E by blowing up in Pm−1 a higher
codimension face L ⊂ ∆. Motivically, by (6.6) we can identify

(7.4) Hm−2(E − Y ∩ E,Q(m− 2)) = M(ΓL)⊗M(Γ//ΓL).

Remark 7.1. We use the word motive rather casually. The reader
loses nothing by thinking of étale or Betti cohomology instead. In-
deed, implicitly in (7.4) we have used cohomological vanishing: viz.
H i(Pm−1 − XΓ,Q(m − 1)) = (0), i > m − 1 for any graph Γ with m
edges. This is true cohomologically because Pm−1 −XΓ is affine. I do
not know to what extent it is true in the motivic category.

As a consequence of (7.4), we get an important piece of structure,
the comultiplication in the category of graph motives M(Γ). This is
not done in [BEK], so I give some technical details.

Construction 7.2. Let Γ be a graph, and let Γ′ ⊂ Γ be a subgraph.
Assume h1(Γ

′) > 0. Then we have defined a residue map

(7.5) M(Γ)→M(Γ′)⊗M(Γ//Γ′).

Proof. Let Γ′ = e1 ∪ . . . ∪ ep, and let L : A1 = . . . = Ap = 0. Let
π : P → Pm−1 be the blowup of L, and let Y ⊂ P (resp. E ⊂ P ) be
the strict transform of XΓ (resp. the exceptional divisor). We have

(7.6) Pm−1 −XΓ = P − Y − E ⊂ P − Y
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and hence a residue map

(7.7) M(Γ) = Hm−1(Pm−1 −XΓ,Q(m− 1))

res−→ Hm−2(E − E ∩ Y,Q(m− 2))
(7.4)∼= M(Γ′)⊗M(Γ//Γ′).

¤
Remark 7.3. This residue can be extended to the relative motive (7.1).
I omit the details.

One other important property of our graph motives which is not
quite as trivial as one might expect is multiplicativity under coproduct
of graphs. Again details are not in the literature, so I give a sketch.

Proposition 7.4. Suppose Γ = Γ1 q Γ2 is a disjoint union of graphs.
Then

(7.8) M(Γ) ∼= M(Γ1)⊗M(Γ2)

Proof. Let A
(j)
i be the edge variables for Γj. By definition, the graph

polynomial of Γ is

(7.9) ΨΓ(A(1), A(2)) = ΨΓ1(A
(1)) ·ΨΓ2(A

(2))

Write P12,P1,P2 for the projective spaces with homogeneous coordi-
nates (A(1), A(2)), A(1), A(2) respectively. Define coordinate linear spaces
L1, L2 ⊂ P12 with Lj : A(j) = 0. Since the Lj ⊂ XΓ, one has a diagram
of Gm-bundles

(7.10)

P12 − (L1 q L2) −−−→ P1 × P2x
x

P12 −XΓ −−−→ P1 −XΓ1 × P2 −XΓ2

The proposition now follows from the observation that if X,Y are affine
varieties of dimensions n, n−1 respectively such that X is a Gm-bundle
over Y , then Hn(X,Q(n)) ∼= Hn−1(Y,Q(n− 1)). ¤

Construction 7.2 and Proposition 7.4 suggest that there is a Hopf
algebra lurking somewhere.

Definition 7.5. A coproduct rule S is a rule associating to each graph
Γ a subset S(Γ) ⊂ 2Edge(Γ). We assume ∅ ∈ S(Γ) and Γ ∈ S(Γ).
Further, for subgraphs γ2 ⊂ γ1 ⊂ Γ, we require

γ1 ∈ S(Γ) and γ2 ∈ S(γ1)⇔ γ2 ∈ S(Γ) and γ′ := γ1//γ2 ∈ S(Γ//γ2)

(Note, in passage from right to left, we are given γ2 and γ′, and we
define γ1 to be the inverse image in Γ of γ′ ⊂ Γ//γ2. )
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Proposition 7.6. Let S be a coproduct rule. Define, for a graph Γ

∆Γ = ⊕resΓ′ : M(Γ)→
⊕

Γ′∈S(Γ)

M(Γ′)⊗M(Γ//Γ′)

Then ∆ is coassociative in the sense that (1⊗∆) ◦∆ = (∆⊗ 1) ◦∆.

Proof. The target of (1⊗∆) ◦∆ (resp. (∆⊗ 1) ◦∆) on M(Γ) is
⊕

Γ′′∈S(Γ)

⊕

Γ′∈S(Γ//Γ′′)

M(Γ′′)⊗M(Γ′)⊗M((Γ//Γ′′)//Γ′)(7.11)

resp.
⊕

Γ1∈S(Γ)

⊕

Γ2∈S(Γ1)

M(Γ2)⊗M(Γ1/Γ2)⊗M(Γ//Γ1).(7.12)

The two objects coincide by the property of S. ¤
Examples 7.7. (i) The Hopf algebra of graphs was originally developed
by Kreimer [K] as a successful attack on renormalization. Roughly
speaking, S(Γ) was taken to be Γ, ∅ together with all divergent sub-
graphs, i.e. all subgraphs Γ′ such that #Edge(Γ′) ≤ 2h1(Γ

′). For this
to work requires a physical theory where the collection of graphs is
controlled by a physical Lagrangian. In the abstract graph setting of
this paper, a renormalization comultiplication of this sort will not be
coassociative. Indeed, if the graph Γ is say log divergent (#Edge(Γ) =
2h1(Γ)) and if Γ′ ⊂ Γ is worse than log divergent then the quotient
Γ//Γ′ is convergent. This causes problems with coassociativity.
(ii) Define S(Γ) to be Γ itself, together with all minimal Γ′ ⊂ Γ,
where a graph Γ′ is said to be minimal if for any Γ′′ ( Γ′ we have
h1(Γ

′′) < h1(Γ
′). (Note ∅ is minimal for h1 = 0.) Then S is a coproduct

rule. (Exercise.) It is this coproduct which is relevant for construct-
ing the motive, leaving questions of renormalization aside. Indeed it is
shown in [BEK] that blowing up linear spaces corresponding to mini-
mal subgraphs (starting with the maximal minimal subgraphs) suffices
to separate σ from the strict transform of XΓ.

To actually explicit a Hopf algebra in the category of motives, one
can proceed as follows. Fix a set Gr of graphs which is closed under the
operations of taking sub and quotient graphs and also disjoint union.
Define

(7.13) G = G(Gr) :=
⊕
Γ∈Gr

M(Γ)

Then if we fix a coproduct rule, G becomes a Hopf algebra in the
category of motives. For example, one could take Gr = Gr(Γ) to be
the smallest such set containing a given graph Γ. We write G(Γ) for
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the resulting Hopf algebra. Actually, of more interest to us than the
full Hopf algebra will be the arrow ∆Γ in Proposition 7.6.

8. Motives and Graph Homology

In the previous section we were concerned with links between the
combinatorics of the graph Γ and the algebraic geometry of Pm−1 −
XΓ. Of course, the simplest example of what were were discussing is
contracting an edge e which is not a loop:

(8.1) M(Γ/e) = Hm−2(({Ae = 0} ∩ (Pm−1 −XΓ),Q(m− 2)).

To study these faces, it is convenient to introduce a variant on our
earlier motive:

(8.2) M0(Γ) := Hm−1(Pm−1 −∆−XΓ,Q(m− 1)) =

Hm−1(Gm−1
m −XΓ ∩Gm−1

m ,Q(m− 1)).

(Note Pm−1 −∆ ∼= Gm−1
m is a torus.) We have residue maps

(8.3) rese : M0(Γ)→M0(Γ/e).

We have resei
◦ resej

= −resej
◦ resei

and hence a complex

(8.4) M0(Γ)
∂−→

⊕
M0(Γ/e)

∂−→
⊕

M0(Γ//{e, e′})→ . . . .

This is a sort of motivic echo of graph homology as defined by Kontse-
vich [Ko1], [Ko2]. A number of variants are possible [CV], but the basic
idea in graph homology is to consider the Q-vector space of oriented
graphs and to define a boundary operator by

(8.5) d[Γ] =
∑

e

±[Γ/e],

where e ∈ Γ runs through all edges which are not loops. There
are, however, at least three important distinctions. Firstly, we do
not identify isomorphic pieces in our complex. It may happen that
Γ//{ei1 , . . . , eip} ∼= Γ//{ej1 , . . . , ejp} but the motivesM0(Γ//{ei1 , . . . , eip})
and M0(Γ//{ej1 , . . . , ejp}) are not identified in (8.4). This is because
they correspond to distinct strata in the stratification of Pn − XΓ an
hence must be counted separately.

Secondly, an edge e ∈ Γ forms a loop if and only if ΨΓ = Ae ·ΨΓ/e is
divisible by Ae. It follows that

(8.6) M0(Γ) = M0(Γ̃)⊗H1(Gm,Q(1))⊗δ ∼= M0(Γ̃)

where Γ̃ is the graph obtained from Γ by shrinking the δ looped edges
to points. In particular, M0(Γ) does not determine h1(Γ).
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Finally, we do not need to orient our graphs. The complex (8.4) is
defined independent of orientation.

W can now define with Gr as in (7.13)

(8.7) G0 =
⊕
Γ∈Gr

M0(Γ)

where the sum now is over Γ ∈ Gr without looped edges. The mul-
tiplication and comultiplication structures carry over from G, (7.13),
so if we fix a comultiplcation rule, then G0 is a Hopf algebra. The co-
multiplication and the differential are both given by residues, so they
anti-commute as remarked above. Thus

Theorem 8.1. With notation as above, G0 is a differential Hopf alge-
bra.

Using the comultiplication and the derivation on G0(Γ) we can build
a double complex as follows. First, if A is an associative coalgebra with
comultiplication map ∆, we have a complex

(8.8) A
∆−→ A⊗ A ∆⊗1−1⊗∆−−−−−−→ A⊗3 → . . .

If the comultiplication is compatible with a differential on A, we get a
double complex. In our situation, this looks like
(8.9)

M0(Γ)
∆−→ ⊕

Γ′∈S(Γ)M
0(Γ′)⊗M0(Γ//Γ′) ∆⊗1−1⊗∆−−−−−−→ . . .

↓ ∂ ↓ ∂⊕
eM

0(Γ/e)
∆−→ ⊕

e,Γ′e∈S(Γ/e)M
0(Γ′e)⊗M0((Γ/e)//Γ′e) . . .

...
...

This differential Hopf algebra is related to the motive as follows.
Recall, we started with Pn−XΓ and then we blew up in Pn certain co-
ordinate linear spaces contained in XΓ. Quite generally, given a finite
collection L of linear spaces in Pn which is closed under intersection,
then there is a simple algorithm for blowing up to achieve a normal
crossings divisor, [ESV]. One blows up the linear spaces in L which
are minimal. These are necessarily disjoint. One takes the strict trans-
forms of the remaining elements in L and again blows up the minimal
elements, etc. We apply this with L the set of coordinate linear spaces
contained in XΓ. Let π : P → Pn be the resulting scheme, and let
Y ⊂ P be the strict transform of XΓ. P has a normal crossings divisor
B = π∗(∆) where ∆ is the coordinate simplex in Pn, and no stratum
of B lies in Y . Using B, we can stratify P − Y in the usual way, so

(8.10) (P −Y )(0) = P −Y −B; (P −Y )(i) = B(i)−B(i+1)−Y ∩B(i)
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where B(i) denotes the closed stratum of B of dimension n− i.
Associated to this stratification we have a spectral sequence

(8.11) Ep,q
1 = Hq−p((P − Y )(p),Q(n− p))⇒ Hp+q(P − Y,Q(n)).

Proposition 8.2. The simple complex associated to the double complex
(8.9) is the E1 complex with q = n in (8.11).

Note however that even in simple examples like the wheel with three
spokes, one needs more in the spectral sequence than just the piece
q = n in order to calculate M(Γ). This suggests that M0(Γ) should be
replaced with some richer object like RΓ(Pm−1 −XΓ −∆,Q(m− 1)).

To simplify, write T r := Pr−∆ ∼= Gr
m and YΓ rather than XΓ∩Tm−1.

The rest of this section is devoted to some tricks which will be used in
the next section to calculate H∗(Tm−1 − YΓ) for graphs Γ which occur
as subgraphs in the wheel with three spokes.

The first trick concerns plane graphs. A graph Γ is a plane graph
if it can be drawn without crossings on the Riemann sphere S2. If Γ
is a plane graph, then so is any face of Γ. The wheel with n spokes
is a plane graph. If Γ is a connected plane graph, the dual graph Γ∨

is defined as follows. Embed Γ in S2. Choose one point vi in each
component Di of S2 − Γ. These are the vertices of Γ∨. Draw one edge
connecting vi and vj for every edge e of Γ such that Di and Dj are
connected by an arc meeting e and no other edge of Γ. In particular,
edges of Γ and Γ∨ are in 1−1 correspondence. For an example, see fig.
1, where Γ has the light edges and Γ∨ the dark.

Graph and Dual Graph

1 2
4 3

fig. 1

5

One has (Γ∨)∨ = Γ. The dual of the banana graph with n edges and
2 vertices (fig. 2) is the circle graph (fig. 3) with n edges connected in
a circle.
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Banana Graph

fig. 2

Circle Graph

fig. 3

One checks

#Conn. Comps(S2 − Γ) = h1(Γ) + 1 = #Vertices(Γ∨)(8.12)

#Edge(Γ) = #Edge(Γ∨)(8.13)

Proposition 8.3. Let Γ be a plane graph with n + 1 edges. Let Ai be
the edge coordinates, and write aij := Ai/Aj for the functions on T n.
Then aij 7→ aji induces an involution of T n which carries YΓ

∼= YΓ∨.

Proof. This follows from the identity on graph polynomials

(8.14) ΨΓ(A) =
∑
T⊂Γ

∏

e6∈T

Ae = (
∏

e

A−1
e )

∑
T⊂Γ

∏
e∈T

A−1
e =

∑

T∨⊂Γ∨

∏

e 6∈T∨
A−1

e = ΨΓ∨(A
−1).

To understand (8.14), let T ⊂ Γ be a spanning tree. Then Γ/T is a
plane graph with one vertex, i.e. a union of looped edges. Then (Γ/T )∨

is a tree which is a spanning tree in Γ∨. ¤
Let Γ be the circle graph with n+1 edges. Then ΨΓ = A1+. . .+An+1,

so T n−YΓ = Pn−∆−{∑Ai = 0} is a configuration which is the com-
plement in Pn of a union of linear hyperplanes meeting transversally.
The following is then well known:

Proposition 8.4. (i) H1(T n − YΓ,Q) ∼= Q(−1)⊕n+1.
(ii) H∗(T n − YΓ,Q) ∼= ∧∗H1

/∧n+1H1.

Definition 8.5. I will say a graph Γ has linear cohomology if H∗(T n−
YΓ,Q) is generated by the classes 1

2πi
duj/uj, 1 ≤ j ≤ n + ν where

u1, . . . , un are the standard units on T n and un+1, . . . , un+ν are defining
equations for the irreducible components of YΓ.

Remarks 8.6. (i) One can (and one should) go further by expliciting
the relations among the generators (cf. [OT], Chap. 3 and Chap.
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5.4. The full condition should be that H∗(T n − YΓ,Q) forms an Orlik-
Solomon algebra, but I am uncertain precisely how to formulate this
in our context.
(ii) If Γ has linear cohomology then Hp(T n − YΓ,Q) is pure of weight
2p.
(iii) Of course the obvious way for Γ to have linear cohomology is to
have an isomorphism T n−YΓ

∼= T n−L where L is a finite set of linear
hyperplanes. Note that such an isomorphism need not be linear.
(iv) Circle graphs have linear cohomology.
(v) Banana graphs (cf. fig. 2) have linear cohomology. Indeed, banana
graphs are dual to circle graphs, so we can use Proposition 8.3.
(vi) We will see in the next section that all the graphs associated to
non-trivial faces in the wheel with three spokes have linear cohomology.

Lemma 8.7. Let Γ be a graph, and let e ∈ Γ be an edge. Let Γ′

be obtained from Γ by subdividing e. Assume Γ and Γ/e have linear
cohomology. Then Γ′ has linear cohomology.

Proof. Assume Γ has n edges, and enumerate the edge variablesA1, . . . , An

so that e↔ An. Write ai = Ai/A1. We identify T n−1 = SpecQ[ai, a
−1
i ].

Let A′j be the edge variables of Γ′, and write a′j = A′j/A
′
1. On the level

of the projective graph hypersurface, one can show (exercise) the map
Ai 7→ A′i, i ≤ n− 1, An 7→ A′n +A′n+1 identifies XΓ′ with the cone over
XΓ.

The picture for YΓ is a bit more complicated. Let D′ ⊂ T n be defined
by a′n + a′n+1 = 0. Then we have

(8.15) π : T n − YΓ′ −D′ → T n−1 − YΓ

In terms of coordinate rings
(8.16)

Q[a′i, a
′
i
−1,

1

a′n + a′n+1

,
1

ψΓ′
] = Q[ai, ai

−1,
1

ψΓ

][a′n+1,
1

a′n+1

,
1

an − a′n+1

]

Since an is a unit, it follows that

(8.17) T n − YΓ′ −D′ ∼= (T n−1 − YΓ)× (Gm − {1}).
By Künneth, we see that H1(T n − YΓ′ −D′,Q) ∼= Q(−1)n+2 and that
H∗(T n − YΓ′ −D′,Q) is generated as an algebra by H1.

Similarly,

(8.18) D′ ∼= SpecQ[a2, a
−1
2 , . . . , an−1, a

−1
n−1,

1

ψΓ/e

][a′n,
1

a′n
]

∼= (T n−2 − YΓ/e)×Gm.
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By our asumptions, it follows that H1(D′) ∼= Q(−1)n generated by the
classes of the evident units, and further thatH∗(D′) is generated byH1.
In particular, H1(T n−YΓ′) ³ H1(D′) and res : H1(T n−YΓ′−D′,Q) ³
H1(D′,Q(−1)). This implies that the residue map is surjective in all
degrees, so we get an exact sequence

(8.19) 0→ H∗(T n − YΓ′ ,Q)→ H∗(T n − YΓ′ −D′,Q)→
H∗−1(D′,Q(−1))→ 0.

The assertion of the lemma follows from (8.18) and (8.19). ¤

9. The Wheel with 3 Spokes

One knows from [So] that ζ(2r + 1) is the period associated to a
motivic extension (that is, an extension which can be constructed ge-
ometrically)

(9.1) 0→ Q(0)→ E → Q(−1− 2r)→ 0

By [BK1], the Feynman amplitude associated to the wheel with n
spokes (fig. 4) is an elementary factor times ζ(2n− 3).

1

2

3

n

Wheel With n Spokes

fig. 4

We have seen that this Feynman amplitude is a period for a motive
of the form H2n−1(P −Y,B−B∩Y ) where P is some blowup of P2n−1

and Y is the strict transform of the graph hypersurface Xn. To get an
extension of the form (9.1), we should construct arrows

(9.2)

H2n−2(B − Y ∩B,Q) −→ H2n−1(P − Y, B − Y ∩B,Q) −→ H2n−1(P − Y,Q)
??y

x??

Q(0) Q(3− 2n)
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in such a way that the pushout and pullback are defined and yield
an extension of the form (9.1). At the moment, the existence of such
arrows is purely conjectural. Our main result ([BEK], Thm. 11.2) is

Theorem 9.1. Let Mn := H2n−1(P2n−1−Xn,Q(2n−1)) be the motive
associated to the wheel with n spokes graph Γn. Then Mn

∼= Q(2).

The proof is too complicated to give here. Note that it fits with (9.2)
in the sense that the inclusion P2n−1 − Xn ⊂ P − Y will give a map
H2n−1(P − Y,Q)→ Q(3− 2n), but this is not sharp enough to deduce
what we want.

The case of the wheel with 3 spokes is rather exceptional. By way
of example, I propose to work out some of the structure of the corre-
sponding motive. Theorem 9.1 in the case n = 3 is easier. First, note
that H1(Γ3) = Q3. If the edges are labeled and oriented as in fig. 5
below

1

2
3

4

5 6

fig. 5

a basis for H1 is given by

(9.3) f1 = e1 − e6 − e2; f2 = e2 − e4 − e3; f3 = e3 − e5 − e1.
From this one easily computes the rank 1 quadrics (e∨i )2|H1(Γ3). For
example,

(9.4) (e∨1 )2 =




1 0 −1
0 0 0
−1 0 1


 .

In particular, one checks that the 6 quadrics (e∨i )2, viewed as homo-
geneous quadrics on P2 = P(H1(Γ3)), span the complete linear system
Γ(P2,OP2(2)). We can identify P5 with the projective space of these
quadrics, and X3 ⊂ P5 is the space of singular quadrics. Now a singular
quadric on P2 is a union of 2 (possibly coincident) lines. The lines on
P2 are parametrized by another P2, so we may identify

(9.5) X3
∼= Sym2(P2)
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The rank 1 quadrics correspond to double lines, and these are parametrized
by the diagonal in Sym2(P2).

Lemma 9.2. We have with ` := c1(O(1) £O(1))
(9.6)
H4(X3,Q) ∼= H4(P2×P2,Q)Z/2Z = Q·[2P2×{pt}+2{pt}×P2−∆]⊕Q·`2.
As Hodge structures,

H4(X3,Q) ∼= Q(−1)2; H5(P5 −X3,Q) ∼= Q(−3).

Proof. Let π : P2 × P2 → Sym2(P2). In the classical topology, one
can define a trace map π∗QP2×P2 → QSym2(P2) by simply adding up

over the stalks. This defines a trace map π∗ : H∗(P2 × P2,Q) =
H∗(Sym2(P2), π∗Q) → H∗(Sym2(P2),Q), and π∗ ◦ π∗ is multiplication
by 2. This proves the lefthand isomorphism in (9.6). For the Hodge
structure, note by duality H5(P5 −X3,Q) ∼= H5

c (P5 −X3,Q(5))∨. We
conclude using the exact sequence

(9.7) 0→ H4(P5)→ H4(X3)→ H5
c (P5 −X3)→ 0.

¤
Another computation of H∗(P5 −X3), due to Deligne, is to remark

that

(9.8) PSL3(C)/SO3(C) ∼= P5 −X3; M 7→M · tM
Even in this case I cannot construct the arrows in (9.2). What is true,
however, is that the locally closed strata of B − Y ∩ B are of a quite
simple sort. They have linear cohomology in the sense of Definition
8.5.

Recall we call a subgraph G ⊂ Γ3 minimal if removing any edge from
G lowers h1. The minimal subgraphs of Γ3 are of three types.

1

Wheel With 3 Spokes; 1 Edge Removed

6

2

43

fig. 6

1 2

45
fig. 7

1 5

3
fig. 8
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There are 6 subgraphs as in fig. 6 which are obtained by deleting an
edge from Γ3. In each case, the locus where the edge variables are zero
is a point (0, . . . , 1, . . . , 0) ∈ X3. Then there are 6 subgraphs as in
fig. 7 obtained by removing 2 non-adjacent edges, and 4 subgraphs as
in fig. 8 obtained by removing all the edges through a given vertex.
The corresponding coordinate linear spaces have dimensions 1 and 2
respectively and are contained in X3. A moment’s thought convinces
you that the union of two minimal subgraphs in this case is either the
whole graph, in which case the two linear spaces are disjoint, or is a
subgraph as in fig. 6, in which case the two linear spaces meet in a
single coordinate vertex (0, . . . , 1, . . . , 0). It follows that blowing up
the 6 coordinate vertices makes the strict transforms of the other 10
minimal subgraphs disjoint. We Then blow them up in any order we
like.

To understand the picture, consider generally linear spaces

Ps ( Pr ( Pn(A1, . . . , An+1)(9.9)

Ps : A1 = . . . = An−s = 0; Pr : A1 = . . . = An−r = 0

Consider the effect of first blowing up Ps ⊂ Pn and then blowing up
the strict transform of Pr. The picture looks like

(9.10)

P2
f−−−→ P

(2)
1

g−−−→ Pn−r−1(A1, . . . , An−r)yc

yd

P1
b−−−→ Pn−s−1(A1, . . . , An−s)ya

Pn

Here the maps a and d are blowups and b and g are given by projec-
tions

(9.11) (A1, . . . , An+1) 7→ (A1, . . . , An−s) 7→ (A1, . . . , An−r).

There are exceptional divisors E
(1)
1
∼= P s × P n−s−1 ⊂ P1 and E

(2)
1
∼=

Pr−s−1 × Pn−r−1 ⊂ P
(2)
1 . The maps b|

E
(1)
1

: E
(1)
1 → Pn−s−1 and g|

E
(2)
1

:

E
(2)
1 → Pn−r−1 coincide with the projections. We define E1 = c−1E

(1)
1 , E2 =

f−1E
(2)
1 ⊂ P2 and Z = b−1{A1 = . . . = An−r = 0} ⊂ P1. Then Z is

the strict transform in P1 of Pr and c is the blowup of Z. The square
bc = df is cartesian.

Let π := a ◦ c : P2 → Pn. Inside P2 we have a normal crossings
divisor B whose components are the strict transforms of the coordinate
hyperplanes {Ai = 0} together with E1, E2. Note that P2 has a toric
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structure, and the locally closed strata of B are all tori with canonical
coordinates. If Γ is a graph with graph hypersurface XΓ ⊂ Pn and
strict transform Y ⊂ P2, then the locally closed strata of B − Y ∩ B
are all of the form

∏
iM

0(γi) where γ is a subquotient graph of Γ.
Let us apply this in the case of X3 ⊂ P5. In this case s = 0 and

we should consider separately the cases r = 1 and r = 2. For r = 1
we have P0 ⊂ P1 ⊂ P5. In this case, E1 ∩ E2 = P3 which one should
perhaps identify with P0 × P0 × P3. It corresponds to the filtration on
Γ3 given by

(9.12) {Γ3 − two non-adjacent edges} ⊂ {Γ3 − one edge} ⊂ Γ3

Taking successive quotients yields two tadpoles (with graph hypersur-
faces the empty set in P0) and one circle graph as in fig. 7. The circle
graph has graph polynomial given by the sum of the graph coordinates,
so we get Y ∩E1∩E2 : A1 + . . .+A4 = 0 in P3 for suitable coordinates.

The case E1 ∩ E2 for r = 2 yields (P0) × P1 × P2. The filtration on
graphs is

(9.13) {Γ3 − three edges through a vertex} ⊂ {Γ3 − one edge} ⊂ Γ3

We get two circles (one with three edges, the other with two) and one
tadpole. P is obtained from P5 by blowing up 16 times, so our divisor
B ⊂ P has 22 irreducible components. None of the coordinate vertices
(that is, 0 dimensional strata of B; not to be confused with vertices on
the graph) lies on the strict transform Y of X3.

We stratify B = B(1) ⊃ B(2) ⊃ . . . ⊃ B(5). The successive compli-
ments are disjoint unions of tori (T r := Gr

m)

(9.14) B(i) −B(i+1) =
∐

T 5−i

Let us compute some of the motives T r − Y ∩ T r. For r = 4, there
are two kinds, with Y ∩ T 4 either a graph hypersurface as in fig. 6 or
fig. 1 (light edges). In the first case, the graph is a banana graph with
3 edges, subdivided twice. Applying Lemma 8.7 twice, we conclude
that Y ∩ T 4 has linear cohomology in the sense of Definition 8.5. The
other case is dual to fig. 6 as illustrated in fig. 1, and we may apply
Proposition 8.3. The varieties T r − Y ∩ T r for r ≤ 3 are easy to
handle. They correspond to shrinking two edges on Γ3 which yields a
graph with 2 vertices, necessarily a banana with tadpoles, or cutting
one edge and shrinking another, which yields a “double bubble” (fig.
9) with graph polynomial of the form (A1 + A2)(A3 + A4).
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Double Bubble

fig. 9

Higher codimensional faces are products of motives associated to
graphs with ≤ 2 vertices. We conclude

Proposition 9.3. Let (P −Y,B−Y ∩B)→ (P5−X3,∆−∆∩X3) be
obtained by blowing up linear spaces associated to minimal subgraphs of
Γ3 as outlined above. Then all the faces (in all dimensions) of B−Y ∩B
have linear cohomology in the sense of Definition 8.5.

10. Renormalization

Consider the “dunce’s cap” graph Γ (fig. 10).

1

2

3 4

Dunce’s Cap

fig. 9

It has 4 edges and 2 loops and hence is log divergent. The reader is
encouraged to write down the spanning trees and use Proposition 4.5
to calculate the graph polynomial

(10.1) ΨΓ = (A1 + A2)(A3 + A4) + A1A2

Among the linear spaces in XΓ corresponding to minimal subgraphs
which will have to be blown up to define our period is {A1 = A2 = 0}.
But note the subgraph e1 ∪ e2 is itself log divergent. This means that
our form ωΓ = Ω/Ψ2

Γ acquires a pole along the exceptional divisor.
Indeed, in affine coordinates ai = Ai/A4 we can write

(10.2) ωΓ =
da1da2da3

((a1 + a2)(a3 + 1) + a1a2)2

Blowing up introduces affine coordinates a1, b2 = a2/a1, a3, and we
find a log pole along the exceptional divisor which is defined in affine
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coordinates by a1 = 0.

(10.3) ωΓ =
da1

a1

∧ db2da3

((1 + b2)(a3 + 1) + a1b2)2

Proposition 10.1 ([BEK],Lemma 5.1). Let Γ be a log divergent graph
with m edges, and let ωΓ be the associated de Rham form (5.10). Let
ρ : P → Pm−1 be the iterated blowup of linear spaces associated to
minimal subgraphs (Examples 7.7(ii)). Then Γ has a divergent subgraph
if and only if ρ∗ωΓ has a pole along some component of the exceptional
locus.

When such a pole occurs, the Feynman amplitude (5.10) diverges.
Certainly a major theme in physics over the past 50 years has been
the program of renormalization to eliminate these poles. Of course one
cannot just “eliminate” poles. The problem is rather to isolate in some
canonical way the polar terms so that in some ultimate calculation
involving a sum over various graphs, the polar terms will all cancel.
The theory of limiting mixed Hodge structures offers a possible solution
in the case that the pole orders along exceptional divisors are all ≤ 1.
(Precisely which pole orders occur depend on which graphs occur in
the theory, and this depends on the Lagrangian.)

Suppose Γ is a log divergent graph with 2n edges and n loops. The
idea is to define linear forms `i,t, 1 ≤ i ≤ 2n in A1, . . . , A2n with coef-

ficients in R[t] such that `i,0 = Ai. We then define ∆t :
∏2n

1 `i,t = 0
and the real chain σt : `i,t ≥ 0 for 0 ≤ t << 1. We can do this is such
a way that σt is contained in the locus where all coordinates are > 0
for 0 < t << 1. In particular, σt ∩ XΓ = ∅ for 0 < t << 1 so

∫
σt
ωΓ

converges for t > 0. What the theory of limiting Hodge structures
suggests is that one can find relative cycles σ1,t = σt, σ2,t, . . . , σp,t rep-
resenting classes in H2n−1(P2n−1 −XΓ,∆t −∆t ∩XΓ,Q) and a strictly
upper triangular p × p matrix N with constant coefficients such that
(writing superscript T for transpose) the limit

(10.4) lim
t→0

exp(N log t)
( ∫

σ1,t

ωΓ, . . . ,

∫

σp,t

ωΓ

)T

exists.
In broad strokes, the program would be the following. Write D =

{|t| < ε << 1} for some small disk. Think of a family P2n−1 −XΓ,∆t

over D. At t = 0 one blows up in P2n−1×D linear spaces contained in
XΓ × {0} according to the pattern we have used. The resulting family
P over D will contain our blowup P of P2n−1 as one component of the
special fibre. Let E ⊂ B ⊂ P be the exceptional components associ-
ated to divergent subgraphs. We have seen that E can be stratified in
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such a way that the strata look like products of Pmµ −Xγ for suitable
subquotient graphs γ of Γ. Inside each of these factors of strata imag-
ine fixing a σt,γ which is a deformation of the reference simplex. Let
T ⊂ P2n−1×D× be a (punctured) tubular neighborhood of the special
fibre P0. T contracts onto P0 and we write π : ∂T → P0 for the restric-
tion to the boundary of T . By definition, the tube over a chain c on P0

is π−1(c) ⊂ ∂T . Given a chain on a stratum of E, we can do a similar
tube construction to get a chain on a larger stratum. By iterating this
game, our products of σt,γ get promoted to 2n− 1-chains supported in
∂T . It seems that this can be done in such a way that the boundary
of these chains lies in ∆t ∩ ∂T . (I have only checked this carefully in
the special case where ∆ can be deformed while leaving fixed the linear
spaces associated to divergent subgraphs, but I conjecture it is true
generally.) The resulting chains are the σi,t.

In the (very) special case of the dunce’s cap (fig. 10) the only diver-
gent subgraph is the circle graph γ = e1 ∪ e2, so E ∼= P1 × P1 above
has one component given by the blowup of the line A1 = A2 = 0 in P3.
The quotient Γ/γ = e3 ∪ e4 is also a circle with 2 edges. The Feynman
periods for these circle graphs converge

(10.5)

∫ ∞

0

d(A1/A2)

(A1/A2 + 1)2
=

∫ ∞

0

d(A3/A4)

(A3/A4 + 1)2
= 1,

so the chains σγ and σΓ/γ can be taken just to be [0,∞] independent of
t. The tube π−1([0,∞]× [0,∞]) can be taken to have boundary lying
on the strict transform of ∆ : A1A2A3A4 = 0. Finally, by standard
differential topology, ∂T can be taken to be transversal to the faces of
∆ so a small modification ∆t of ∆ is still transversal, and the relative
homology class of the tube is canonically defined. Call the resulting
chain σ2,t and let σ1,t be the deformation of σ as above. For example
if I take ∆t : (A1 − tA4)(A2 − t2A4)A3A4 = 0 I find

∫

σ1,t

ωΓ =

∫ ∞

t

da1

a1

∫

[t,∞]×[0,∞]

db2da3

((1 + b2)(1 + a3) + a1b2)2
(10.6)

∫

σ2,t

ωΓ =

∫

|a1|=ε

da1

a1

∫

[t,∞]×[0,∞]

db2da3

((1 + b2)(1 + a3) + a1b2)2
(10.7)

Define N =

(
0 1

2πi
0 0

)
. Then

(10.8) lim
t→0

exp(N log t)

(∫
σ1,t

ωΓ∫
σ2,t

ωΓ

)
=

(
limt→0(

∫
σ1,t

+ log t)

2πi

)

and this limit exists.
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Quite generally, it seems to be possible to give such an ad hoc renor-
malization scheme when Γ is log divergent with at worst log divergent
subgraphs. I suspect this is more or less equivalent to techniques al-
ready known to the physicists. The interesting question is whether this
is really a limiting Hodge structure. (I am endebted to Hélène Esnault
for pointing out that this is a problem.) For this to be the case, we
need that the cohomology class [Ω/Ψ2

Γ] should satisfy a certain nilpo-
tent residue condition [D]. By a criterion of Katz, this residue condition
will hold if the form Ω/Ψ2

Γ has at worst log poles when we blow up on
P on P0 to get a normal crossings situation. Unfortunately, it is very
difficult to control these blowups because the singularities of XΓ are
highly non-linear. However, there is a theory of Hodge modules due
to M. Saito [Sa1], [Sa2] which has the following consequence. Change
notation so P becomes a normal crossings model of our situation. Let
ψ (not to be confused with ΨΓ) be the vanishing cycle sheaf on P0.
By definition, ψ is an object in the derived category of constructible
sheaves on P0 and its cohomology carries a mixed Hodge structure
(depending on the choice of parameter t) which is the limiting Hodge
structure. As a consequence of the existence of pullbacks for Hodge
modules, it will be the case that for any Zariski open set U0 ⊂ P0 that
H∗(U0, ψ|U0) will also carry a Hodge structure. It is known from work
of Steenbrink [I], 2.2.4.1 that ψ⊗C is quasi-isomorphic to the complex
of relative log forms, the quasi-isomorphism depending on the choice
of a parameter t. But on U0 our form Ω/Ψ2

Γ defines a section of top
degree in this complex, and hence a class in H2n−1(U0, ψ ⊗ C). The
challenge would be to show that a period associated with this class
coincides with the limit as t→ 0 of the top entry in the column vector
(10.4).

Needless to say, the above is more of a statement of a program rather
than an outline of results obtained.

11. Graphs and Zeta Values

Here are a couple of examples taken from a lecture of Kreimer [K]
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