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Augmented generating functions

Take a combinatorial class C. Build a generating function but keep
the objects.

C (x) =

I Get the ordinary generating function by evaluating c 7→ 1.

I Count with parameters by evaluating each object as a
monomial in the parameters.

I More to today’s point if C is a class of Feynman graphs
evaluate by Feynman rules.



Two expansion parameters

For us, Feynman rules are an evaluation map φ, say

φ : C → C[L]

The Green function is φ applied to the augmented generating
function.

G (x , L) =

The actual physical Feynman rules build an integral from the
Feynman graph. L is an energy scale parameter. x is the coupling
constant.



Which variable to expand in first?

Suppose

G (x , L) = 1 +
∑
i≥1

∑
j≥i

ai ,jL
ix j

Match the powers of L and x as much as possible

G (x , L) =

The k = 0 part is known as the leading log expansion.
The k = 1 part is known as the next-to-leading log expansion.
The k = 2 is known as the next-to-next-to-leading log expansion.



What does “leading log” mean?

L is the logarithm of some appropriate energy scale.
x is the coupling constant which is treated as a small parameter.

The leading log expansion captures the maximal powers of x
relative to the powers of the energy scale.

The next-to-leading log expansion is next. It is suppressed by one
power of x , and so on.



Goal

How can we understand the log expansions combinatorially?

Currently two answers

I Krüger and Kreimer Filtrations in Dyson-Schwinger equations:
next-toj -leading log expansions systematically. Annals of
Physics, 360, (2015), 293-340. arXiv:1412.1657

I current work with Julien Courtiel (to be submitted in the next
week or two).



A Dyson-Schwinger equation

Consider a Dyson-Schwinger equation for inserting a 1-loop
propagator graph into itself, eg

After some work this becomes

G (x , L) = 1− xG (x , ∂−ρ)−1(e−Lρ − 1)F (ρ)
∣∣
ρ=0

where

F (ρ) =
f0
ρ

+ f1 + f2ρ+ f3ρ
2 + · · ·

comes from the regularized Feynman integral for the 1-loop graph.



Rooted connected chord diagrams

Can solve this by a chord diagram expansion (with N. Marie, more
general case with M. Hihn).

A chord diagram is rooted if it has a distinguished vertex.
A chord diagram is connected if no set of chords can be separated
from the others by a line.
Eg:

These are really just irreducible matchings of points along a line.



Recursive chord order

Let C be a connected rooted chord diagram. Order the chords
recursively:

I c1 is the root chord

I Order the connected components of C r c1 as they first
appear running counterclockwise, D1,D2, . . .. Recursively
order the chords of D1, then of D2, and so on.

Eg:



Terminal chords
A chord is terminal if it only crosses chords which come before it in
the recursive chord order. Let

t1 < t2 < · · · < t`

be the terminal chords of C . Then

I b(C ) = t1 and

I fC = ft`−t`−1
· · · ft3−t2ft2−t1f

|C |−`
0

Eg:



Chord diagram expansion

Theorem

G (x , L) = 1−
∑
i≥1

(−L)i

i !

∑
C

b(C)≥i

x |C |fC fb(C)−i

solves

G (x , L) = 1− xG (x , ∂−ρ)−1(e−Lρ − 1)F (ρ)
∣∣
ρ=0

where

F (ρ) =
f0
ρ

+ f1 + f2ρ+ f3ρ
2 + · · ·



What is the leading log part?

We had

G (x , L) = 1−
∑
i≥1

(−L)i

i !

∑
C

b(C)≥i

x |C |fC fb(C)−i

The leading log part is



What is the next-to-leading log part?

We had

G (x , L) = 1−
∑
i≥1

(−L)i

i !

∑
C

b(C)≥i

x |C |fC fb(C)−i

The next-to-leading log part is



After that
Something different happens for the next-to-next-to leading log
part. We had

G (x , L) = 1−
∑
i≥1

(−L)i

i !

∑
C

b(C)≥i

x |C |fC fb(C)−i

We get



Closed forms

Through the basic decomposition of rooted connected chord
diagrams:

We can determine these exponential generating functions (work of
Julien Courtiel). Specifically

LL: 1−
√

1− 2Lxf0

NLL: xf1

(
1 +

1√
1− 2Lxf0

ln

(
1√

1− 2Lxf0

))
and the NNLL is longer and takes more work.



Asymptotics

Theorem (Courtiel)
# rooted connected chord dia-
grams, n chords, b(C ) ≥ n−k

∼ # rooted connected chord dia-
grams, n chords, last k terminal.

There’s an explicit asymptotic formula.

So, if F (ρ) is not outrageous the next-tok -leading log expansion is
given by

I the exponential generating function for diagrams with
b(C ) ≥ n − k

I f0
I f1

Nothing else plays a role.



What about Krüger and Kreimer’s approach

Krüger and Kreimer approach the problem differently.

I They also start with Dyson-Schwinger equations.

I They use Hopf algebraic properties to map to the shuffle
algebra of words.

I Filtering the word Hopf algebra cuts out the different log
expansions.

The alphabet for these words corresponds to the primitive
Feynman graphs and analogues when graphs are combined.



Similarities and differences

Similarities:

I The master equations.

I An underlying combinatorial perspective.

Differences:

I The basic objects.

I Automaticity.

I Generality.

I Where the new periods come from.



But what about their results?

On the common domain of applicability both groups’ results are
the same.

They have to be because we are both describing the same
underlying physics.



So. . . ?

What is going on?

Quite different objects are describing the same physics.

Why? How can we use it?
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