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Renormalization Hopf Algebras I: The
Connes-Kreimer Algebra of Rooted Trees

Karen Yeats
(Scribe: Karel Casteels)

April 22, 2010

1 Comultiplication of Rooted Trees

We assume the reader is familiar with the usual notions regarding rooted
trees and the basics of algebra. We denote the composition of two maps f
and g as fg := f(g(·)) (instead of the usual f ◦ g).

We always draw rooted trees “downward” with the root at the top. The
size |T | of a tree T is the number of vertices in T . The empty tree is denoted
by the symbol 1. We will usually drop the term “rooted” as all trees consid-
ered in this lecture are rooted trees. A forest will always refer to a disjoint
union of rooted trees.

For example, the following are (rooted) trees: , , = .

Definition 1 (Comultiplication of Rooted Trees or “The Pulling-Apart Op-
eration”). Let T be a rooted tree.

1. An admissible cut is a set of edges of T that contains at most one edge
in any path from the root to a leaf. Note that the empty set is an
admissible cut.

2. Given an admissible cut C and the forest F := (V (T ), E(T ) \ C), we
let RC(T ) be the component of F that contains the root, and PC(T )
the set of all other components of F .
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3. The comultiplication ∆(T ) is the formal sum

∆(T ) = T ⊗ 1+
∑
C

PC(T )⊗RC(T ),

where the sum is over all admissible cuts C of T .

Example. Consider the tree T = . By inspection, we see that

∆(T ) = 1⊗ + ⊗ 1 + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ .

Note that the first term corresponds to the admissible cut C = ∅, while the
second term corresponds to the admissible cut C = E(T ).

Exercise. Calculate ∆(T ), where

T = .

2 Hopf Algebras

Definition 2. Let K be a field and let H be a vector space over K. If H
satisfies the properties in the following list, then H is called a Hopf algebra.

1. H is an associative unital algebra. This means that there exist vector
space homomorphisms m : H⊗H → H (called multiplication) and ι :
K→ H (called identity) such that the following two diagrams commute

H⊗H⊗H

H⊗H H⊗H

H

m⊗ id id⊗m

m m
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and

K⊗H ' H ' H⊗ K

H⊗H H⊗H

H

ι⊗ id id⊗ ι

m

id

m

.

We abuse notation by writing 1 := ι(1) and ab := m(a⊗ b). Note that
the first diagram asserts associativity of m, i.e., a(bc) = (ab)c, while
the second diagram simply says that 1 acts as a multiplicative identity
in H, i.e., 1a = a = a1.

2. H is a coassociative counital algebra. This means that there exist vector
space homomorphisms ∆ : H → H⊗H (called comultiplication) and ε :
H → K (called counit) such that the following two diagrams commute:

H⊗H⊗H

H⊗H H⊗H

H

∆⊗ id id⊗∆

∆ ∆

and
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K⊗H ' H ' H⊗ K

H⊗H H⊗H

H

ε⊗ id id⊗ ε

∆

id

∆

.

In symbols, the two diagrams assert that (id⊗∆)∆ = (∆⊗ id)∆ and
(id⊗ ε)∆ = (ε⊗ id)∆ = id.

3. H is a bialgebra. That is, the maps ∆ and ε are algebra homomorphisms
(equivalently, m and ι are coalgebra homomorphisms).

4. There exists a vector space homomorphism S : H → H (called an
antipode) such that the following diagram commutes:

H⊗H H⊗H

H K H

H⊗H H⊗H

∆

∆

ε

S ⊗ id

id⊗ S

ι

m

m

.

In other words, m(id⊗ S)∆ = ιε = m(S ⊗ id)∆.

Definition 3. Let T denote the collection of all forests of rooted trees. For
K = Q, we make T into a Hopf algebra as follows.

1. Addition is formal;

2. The unit ι is defined by ι(1) = 1 and counit is ε(1) = 1 (note that
ε(T ) = 0 for T 6= 1);
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3. Multiplication of two forests is their disjoint union and comultiplication
is the map ∆ from Definition 1;

4. The antipode S is defined recursively by S(1) = 1 and, for T 6= 1,

S(T ) = −m(S ⊗ id− ιε)∆(T ).

The choice of S is the only possibility given the other operations. Note
that we must have S(1) = ιε(1) = 1. Moreover, ιε(T ) = 0 for all T 6= 1. On
the other hand, for T 6= 1 we have

ιε(T ) = m(S ⊗ id)∆(T )

= m(S ⊗ id)(T ⊗ 1+ 1⊗ T + · · · )
= m(S ⊗ (id− ιε))∆(T ) +m(S ⊗ id)(T ⊗ 1)

= m(S ⊗ (id− ιε))∆(T ) + S(T ),

from which the recursion in Condition 4 above follows.

Example. We calculate S(T ) for T = .
By the recursive formula for S, we have

S(T ) = −m(S ⊗ (id− ιε))
(

⊗ 1+ 1⊗ + 2( ⊗ 1) + ( )⊗
)

= S(1) − 2S( ) − S( )

Now,

S(1) = 1,

S( ) = −m(S ⊗ (id− ιε))( ⊗ 1+ 1⊗ )

= −

and

S( ) = −m(S ⊗ (id− ιε))(∆( )∆( ))

= −m(S ⊗ (id− ιε))( ⊗ 1+ 1⊗ )2

= −m(S ⊗ (id− ιε))( ⊗ 1+ 2( ⊗ ) + 1⊗ )

= −2S( ) −
= −2(− ) −
=
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Thus

S(T ) = − + 2( )− .

Exercise. 1. Calculate

S( ).

2. Can you give an explicit (i.e., non-recursive) characterization of S for
T ?

Properties and Vocabulary 1. For any integer n ≥ 0, let Tn be the
subspace of T generated by the forests with exactly n vertices. Notice that
for all i, j and n,

m : Ti ⊗ Tj → Ti+j
∆ : Tn →

⊕
i+j=n

Ti ⊗ Tj

S : Tn → Tn.

This says that, as a Hopf algebra, T is Z≥0-graded. We may therefore write

T =
⊕
n≥0

Tn.

1. The elements of Tn are called homogeneous of degree n.

2. As Tn is finite dimensional for every n, we’ll say T is of finite type.

3. Since T0 ' Q, T is connected.

4. The multiplication m is a commutative operation since we can commute
the inputs, i.e., TR = RT for any T and R in T . On the other hand, ∆
is not cocommutative as we cannot commute the outputs, since T⊗R 6=
R⊗ T in general.

5. An element F of T is primitive if ∆(F ) = F ⊗ 1+ 1⊗ F .

6. We let P(T ) denote the vector space generated by the primitive ele-
ments.
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For example, we have already seen above that F = is primitive. Thus
any scalar multiple of is primitive. These are the only primitive homoge-

neous elements of degree 1. Now consider F = 2 − . We have

∆( 2 − ) = 2∆( )−∆( )

= 2( ⊗ 1) + 2(1⊗ ) + 2( ⊗ )− ⊗ 1− 1⊗ − 2( ⊗ ).

It follows that F is primitive. In fact, F is the only primitive homogenous
element of degree 2.

Exercise. Find a basis for all primitive elements of size at most 4. What
can you say in general?

3 The Restricted Dual

Recall that the dual of a finite-dimensional vector space V is the vector space

V ∗ := HomK(V,K).

In other words, V ∗ is the vector space consisting of all linear maps from V to
its base field. For H a Z≥0-graded Hopf algebra of finite type, the restricted
dual is

H∗ =
⊕
n∈Z≥0

H∗n.

Notice that H∗ is a Hopf algebra with the following data:

ε∗ : H∗ → K

f 7→ f(1)

ι∗ : K → H∗

k 7→ (T 7→ kT )
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m∗ : H∗ ⊗H∗ → H∗

f ⊗ g 7→ (f ⊗ g)∆

∆∗ : H∗ → H∗ ⊗H∗

f 7→ fm

S∗ : H∗ → H∗

f 7→ fS

How should we think about the restricted dual of T ? Let F be a forest
in T . Define ZF : T → K by

ZF (F ′) =

{
1 if F = F ′,

0 otherwise.

4 The Structure of P(T ∗)
Let ZF ∈ T ∗ be as above where F ∈ Ti. We know that ZF (F ) = 1 and
∆∗(ZF ) = ZF ⊗1∗+1∗⊗ZF . Thus ∆∗ZF (Fi⊗Fj) is nonzero precisely when
either Fi = F and Fj = 1, or Fi = 1 and Fj = F . On the other hand,

∆∗(m(Fi ⊗ Fj)) = ∆∗(FiFj)

=

{
1 if FiFj = F ,

0 otherwise.

Thus ZF ∈ P(T ∗) if and only if F is a single tree. Therefore,

P(T ∗) = span(ZT | T a tree in T ).
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Renormalization Hopf Algebras II: The
Insertion Lie Algebra and B+

Karen Yeats
(Scribe: Karel Casteels)

May 6, 2010

Before we begin, recall that we stated (without full justification) that

P(T ∗) = span(ZT | T a tree in T ).

Let us complete the proof of this. We showed last time that

span(ZT | T a tree in T ) ⊆ P(T ∗).

In the other direction, let Z ∈ P(T ∗). As the forests form a basis of T , it
suffices to check how Z acts on forests. Since Z ∈ P(T ∗), by definition we
must have

∆∗(Z) = Z ⊗ 1∗ + 1∗ ⊗ Z.

Moreover, it is easy to check that for any forests F and F ′ we have

m∗(ZF ⊗ Z1)(F
′) = ZF (F ′).

This implies that 1∗ = Z1. Thus ∆∗(Z)(F1 ⊗ F2) = 0 unless either F1 = 1

or F2 = 1.
On the other hand, by definition we have ∆∗(Z)(F1 ⊗ F2) = Z(F1F2).

Thus Z(F ) = 0 if F is a forest which is not a single tree. In other words,
there exist cT ∈ Q such that

Z =
∑

T a tree

cT ZT .

Exercise. Let F be primitive. Show that ZF is indecomposable. That is,
show ZF cannot be written as a linear combination of products of elements
in ker ε∗.
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1 More on the Structure of P(T ∗)
How do we see the structure coming from ∆ (i.e., m∗) on P(T ∗)? In par-
ticular, what is m∗(ZT1 ⊗ ZT2) for trees T1 and T2? Well, let T3 be a tree.
Then

m∗(ZT1 ⊗ ZT2) = ZT1 ⊗ ZT2(∆(T3)).

This is nonzero precisely when T3 has a term T1 ⊗ T2 in ∆(T3), i.e, when we
can (admissably) cut T3 to get T1 and T2. Another way of phrasing this is
that we can graft T1 onto T2 to obtain T3. In this case, the coefficient is the
number of different such graftings. In conclusion m∗(ZT1 ⊗ ZT2) is the sum
over all possible graftings of T1 onto T2.

Note. For the remainder of this section, we’ll often (but not always) abuse
notation and write (or draw) the tree T to represent the map ZT .

Example. Let us calculate

m∗( ⊗ ).

As there are three vertices in , we may graft onto it in three ways.
Thus

m∗( ⊗ ) = + +

= + 2 .

On the other hand,

m∗( ⊗ ) = + .

It is easy to check that m∗(ZT1 ⊗ ZT2) is, in fact, a pre-Lie product. So
we may turn P(T ∗) into a Lie algebra with Lie bracket given by

[ZT1 , ZT2 ] := m∗(ZT1 ⊗ ZT2)−m∗(ZT2 ⊗ ZT1).

Aside. Recall that a K-vector space g is called a Lie algebra if it is equipped
with a Lie bracket [·, ·] : g⊗ g→ g satisfying the following properties:
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1. The Lie bracket is bilinear;

2. The Lie bracket is antisymmetric (i.e., [a, b] = −[b, a] for all a, b ∈ g);

3. The Lie bracket satisfies the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ g.

(Note that the second property implies [a, a] = 0 for all a ∈ g.)

In our case, the Jacobi identity is implied by the coassociativity of T .

Exercise. Give a combinatorial proof of the Jacobi identity for P(T ∗).

Example.

[ , ] = − − = − .

Consider the commutator subspace

[P(T ∗),P(T ∗)] := span{[f, g] | f, g ∈ P(T ∗)}.

We have already shown that [ , ] = . This is (up to scalar multipli-
cation) the only ZT ∈ [P(T ∗),P(T ∗)] with T of size 3. (Recall that the size
of a tree is simply its number of vertices.) How about those elements of the
commutator subspace that are linear combinations of trees of size 4? Well,
it is easy to see that a basis may be formed by the two elements

[
,

]
= + 2 − ,[

,
]

= + + −

= + .

Of course, a different basis for the size 4 part (with positive coefficients)
can be formed by

{[
,

]
,
[

,
]

+
[

,
]}

=

{
+ , + 3

}
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Exercise. 1. Calculate a basis for the 5-vertex part of [P(T ∗),P(T ∗)]

2. What happens in general?

Research Problem. Describe the lower central series of P(T ∗), where the
lower central series is the sequence of subspaces L1, L2, . . . defined recursively
by L1 := [P(T ∗),P(T ∗)] and, for k > 1, Lk := [P(T ∗), Lk−1]. This should
be related to the function “P” from my (Karen Yeats’) thesis. It should also
say something about transcendental content (a la Drinfel’d associatior).

2 The Big Picture

The idea is that T and P(T ∗) contain the same information. This is true in
a precise sense because of

Theorem 2.1 (Milnor-Moore). If H is a graded, connected, commutative
or cocommutative Hopf algebra of finite type, then H ' U(P(H)) (as Hopf
algebras).

Aside. Here U(g) denotes the universal enveloping algebra of a Lie algebra
g defined as follows. If g is a Lie algebra, let T (g) be the tensor algebra (i.e.,
T (g) =

⊕
k≥0 g⊗k). Then

U(g) = T (g)/〈[a, b]− a⊗ b + b⊗ a | a, b ∈ g〉.

In our case, T ∗ ' U(P(T ∗)). Our general outlook is to first find in-
teresting Hopf algebras H from renormalization and then to look at the
corresponding P(H∗).

3 B+

The obvious tree operation that we’re missing is that of adding a root. We’ll
denote this operation by B+. Thus,

B+(T1T2 · · ·Tn) = T1 T2 Tn· · ·
.
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Example.

B+( ) = .

How does B+ relate to the Hopf algebra? What is ∆B+? Let T be a tree.
Then

∆B+(T ) = ∆( T )

= B+(T )⊗ 1 + T ⊗ +
∑

adm cuts c

PC(T )⊗B+(RC(T ))

= B+(T )⊗ 1 + (id⊗B+)∆(T ).

A similar calculation for forests yields

∆B+(F ) = B+(F )⊗ 1 + (id⊗B+)

( ∏
T a tree of F

(
T ⊗ 1 +

∑
adm cuts C

PC(T )⊗RC(T )

))
= B+(F )⊗ 1 + (id⊗B+)∆(F ).

Thus ∆B+ = B+ ⊗ 1 + (id⊗B+)∆.
What is the fancy name for this? Let H be a bialgebra. Let L : H → H⊗n

be a linear map. Define the map b that takes L to the map bL : H → H⊗(n+1)

where

bL = (id⊗ L)∆ +
n∑

i=1

(−1)i∆iL + (−1)nL⊗ 1,

where
∆i = id⊗ id · · · id⊗∆⊗ id · · · id

(with ∆ in the ith slot).

Exercise. Check that b2 = 0.

We can build a cohomology theory called Hochschild cohomology. Here
is a three line summary of cohomology:

1. You need a map b taking objects of one size to objects of the next size,
such that b2 = 0.

2. Take quotients ker(b)/Im(b).

3. Use these to understand your original objects.

For n = 1, bL = 0 says 0 = bL = (id ⊗ L)∆ −∆L + L ⊗ 1. This is the
B+ identity, i.e., B+ is a 1-cocycle. This is the cohomology we will use here.
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Renormalization Hopf Algebras III: The Hopf
Algebras of Feynman Graphs

Karen Yeats
(Scribe: Sophie Burrill)

May 13, 2010

1. Feynman graphs
We begin by considering some examples of Feynman graphs

that arise in each of quantum electrodynamics (QED), scalar
field theory, and quantum chromodynamics (QCD):

QED scalar field theory QCD

We then axiomatize by half edges:

• A graph is a set of half edges, a set of vertices, a set of
half-edge half-edge adjacencies, and a set of half-edge vertex
adjacencies.

• A pair of adjacent half edges is called an internal edge.

• Other half edges are called external edges.

The only inputs that we will need from the physical theory are:
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(0) a set of half edges
(1) a set of permissible types for the half-edge half-edge

adjacencies (i.e. a set of edge types)
(2) a set of permissible types for half-edges adjacent to a

vertex (i.e. a set of vertex types)
(3) an integer weight for each edge-type and each vertex-

type (i.e. “power counting weights”)
(4) an integer dimension of space time (usually 4)

Then given such information, we are interested in graphs with
types that conform to (1) and (2), that is graphs with a set of
edge types and vertex types.

Example. We give an example from QED where there are 2
types of permissible edges and 1 permissible vertex type. We
illustrate them below with their power counting weights:

permissible picture weight

edge 2

edge 1

vertex 0

In this case the dimension, D = 4. We also note that the first
illustrated edge type is referred to as a photon.

Then, two graphs that satisfy these conditions are:

Example. From scalar field theory, φ4 we can have the following
edge and vertex permissible with D = 4:
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permissible picture weight

edge 2

vertex 0

Two graphs that satisfy these conditions are:

Example. Also in scalar field theory with φ4 with D = 6:

permissible picture weight

edge 2

vertex 0

An example of a graph that satisfies these conditions is:

Example. In QCD with D = 4:

permissible picture weight

edge 2
edge 1
edge 1

vertex 0

vertex 0

vertex -1

vertex 0

3



Labelled vs. Unlabelled counting
Traditionally in the Quantum Field Theory (QFT) commu-

nity the external edges are taken as unlabelled, that is:

6=
while the internal edges are taken as unlabelled. However, each
graph appears with a factor of 1

|Aut| (where |Aut| is defined to

be the number of automorphisms) so in reality we are doing
labelled counting. In particular we have the usual exponential
relationship between connected and not necessarily connected.
Vocabulary: One particle irreducible (1PI) means 2 -edge

connected (i.e. a connected graph remains connected with any
one edge removed).

Definition 1. Let l be the loop number of a graph. The su-
perficial degree of divergence of a graph G in a theory is

w(G) := Dl −
∑

e internal

w(e)−
∑
v

w(v).

If w(G) ≥ 0 we say G is divergent. We interested in 1PI and
divergent graphs.

We care about these divergent graphs because in physics they
are the ones that need fixing, since their Feynman integrals di-
verge.

Example. Calculate the degree of divergence of the following
QED:
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Answer: In QED, D = 4, l = 1, there are 3 internal edges,
two with weight 1 and one with weight 4, and the weight of all
vertices is 0. Thus w(G) = 4 ∗ 1 − 4 − 0 = 0. This is a graph
that we are interested in.

Example. Calculate the degree of divergence of the following
QED:

Answer: In this case there are two loops so l = 2, and there
are 2 internal edges weighted 2 and 4 internal edges weighted 1.
Thus w(G) = 4 ∗ 2− 8− 0 = 0. Again we are interested in this
graph.

Example. Calculate the degree of divergence of the following
QED:

Answer: Here we have w(G) = 4 ∗ 2− 8− 0 = 0. Again we are
interested in this graph.

Example. Calculate the degree of divergence of the following
QED:

Answer: Here we have only two internal edges, each weighted
1. Thus: w(G) = 4 ∗ 1 − 2 − 0 = 2 > 0 and we are again
interested in this graph.
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Example. Calculate the degree of divergence of the following
QED:

Anwer: Here there are 5 internal edges each weighted 1. Thus:
w(G) = 4 ∗ 1− 5− 0 = −1 and the graph is not divergent.

Exercise. Show that for the 4 theories given the superficial de-
gree of divergence depends only on the external edge types.

2. The Hopf Algebra
We pick a theory T . The Hopf algebra HT as a vector space

is the Q span of disjoint unions of 1PI divergent graphs in T .
Recall that 1 is the empty graph, which we identify with the
single vertex with no cycles graph. Then:

• m is a disjoint map

• unit map: Q→ HT

1 7→ 1

• co-unit map: HT → Q

1 7→ 1

G 7→ 0

• coproduct: ∆(G) = G⊗ 1 + 1⊗G+
∑

γ⊆G γ ⊗G\γ

Where G is non-trivial, and γ is also the disjoint union of 1PI
and divergent graphs, and G\γ is the contraction of connected
components to an edge or vertex in the theory.
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Example. Compute ∆

 .

Answer:

∆

  = ⊗ 1 + 1⊗

+ ⊗ + ⊗

+ ⊗ + ⊗

+ ⊗ + ⊗

+ ⊗

Example. We compute the following comultiplication which
contains overlapping subdivergencies:

∆

  = 1⊗ + ⊗ 1

+2 ⊗ .

7



Finally, the antipode comes recursively as before:

S(G) = −G−
∑
γ

S(γ)G\γ

Also, as before, we can also consider primitives, Milnor-Moore
and Hochschild cohomology. With regards to B+, there are some
subtleties which must be examined.

Exercise. Calculate ∆

( )
in φ3.

Exercise. Calculate ∆

( )
in QCD.

3. Graphs to trees and back again
We illustrate how the graphs are represented with trees via a

few examples.

Example. Consider the following graph in QED:

We break the above graph into pieces and form a tree as follows:
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Example. Consider the following graph in QED and its tree
representation:

Example. Consider the following graph in QED and its tree
representation:

4. Insertion
The above examples tell us whatB+ then has to be: insertion.

For example:

Example. B+

( )
= .

Note that inside the parentheses is the graph you want to
insert, and in the superscript is the graph you want to insert it
into. Furthermore, there are subtleties to this insertion:

1. There are different ways of inserting.

Example. Consider B+

 . There are three

different ways the insertion could be performed. The solu-
tion to the problem is sum over all of them:

B+

  = + +
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2. Double counting. Naively, for example, we compute:

B+

( )
= 2 ∗

This can be fixed with a messy fudge factor:

Bγ
+(X) =

∑
Γ∈H

bij(γ,X,Γ)

|X|∨
1

maxf(Γ)

1

(γ|X)
Γ

where

maxf(Γ) := the number of insertion trees
corresponding to Γ

|X|∨ := the number of distinct graphs coming
from permuting external edges

bij(γ,X,Γ) := the number of external edges of X to
insertion places of γ

(γ|X) := the number of insertion places for X in γ

This fudge factor was constructed so that if we sum over all
primitives with a given structre and insert into all places
we get the series with each graph with its symmetry factor

1
|Aut| . For a large example of this, see “Anatomy of a Gauge

Theory” by D. Kreimer (arxiv.org).

Example. Let x be a counting variable.

xB
1
2
+

((
1 + x

)2

+O(x2)

)
=

x
1

2
+ x2 1

2
+O(x2)

Exercise. Define X := 1 − B
1
2
+

( 1
X2

)
in φ3. Calculate

X to O(X4). (The answer is an in K. Yeats’ thesis).
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Example. Calculate the following in QCD:

B
1
2
+

(
+ +

)
The answer is in the “Anatomy” paper by Kreimer.

3. We want the Hochschild 1-cocycle property for Bγ
+, that is

we want:
∆B+ = (id⊗B+)∆ +B+ ⊗ 1.

Thus, we need γ to be primitive since ∆Bγ
+(1) = ∆(γ)

(∆(Bγ
+(1) = (id⊗Bγ

+)(1⊗1) +B+(γ)⊗1 = 1⊗γ+γ⊗1.)

4. But this still is not enough. For example:

can be obtained by inserting into ; and also by

inserting into . Thus,

⊗

11



appears in ∆

B+

  but can not appear in

(
id⊗B+

)
∆

 +B+

 ⊗ 1
= 1⊗B+

 + ⊗ +B+

 ⊗1.
It is too much to ask for each Bγ

+ to be a 1-cocyle. We want:

Bk,r
+ =

∑
γ primitive

Bγ
+

to be a 1-cocycle, where k is the loop, order, and |γ| = k and
the external structure of γ is r.

This still does not fix the problem, so we must go back to
physics and get some identities between graphs.

Example. Slavnov Taylor identities.
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The B+ sub-Hopf-algebra

Karen Yeats
(Scribe: Guillaume Chapuy)

May 20, 2010

Today it is going to be a lot of gruesome examples, all of them dealing
with the following problem: given a Hopf algebra H and a collection of ele-
ments (ci)i≥0 in H, is the algebra C generated by the ci’s a Hopf-algebra? (for
the induced structure). In this case, we will say that C is a sub-Hopf-algebra.
In the case of the graded Hopf algebras we consider in this course, the only
property we need for C to be a sub-Hopf-algebra is the “stability” of the
coproduct: indeed, the stability of the antipode S will then follow from the
induction formula we have already used several times.

1 A first example

We will focus in particular on structures defined recursively using (systems
of) equations involving the B+ operation. Our first example is the equation:

X = 1+ xB+(X2)

in the Connes-Kreimer algebra T of rooted trees. Here, we have to think of
x as a formal variable, and of X = X(x) as a formal power series in x with
coefficients in T . Let’s iterate to find the first few terms:

X = 1+ x + 2x2 + x3
(
4 +

)
+ x4

8 + 4 + 2

+ O(x5).
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Side-remark: If we think about what this equation does, we understand
it generates (computer scientists) binary trees, where we have forgotten the

left-right ordering of the children of each node. For example, the term 4

corresponds to the 4 different ways of realizing the tree as a binary tree
(2 left/right choices for each edge). Not suprisingly, we recognize here the
sequence 1, 1, 2, 5, 14, . . . of Catalan numbers.

Back to our problem, let’s write X =
∑

n≥0 cnx
n. The first terms are:

c0 = 1

c1 =

c2 = 2

c3 = 4 +

c4 = 8 + 4 + 2

Now take the subalgebra C generated by the ci’s: is this a sub-
Hopf-algebra of T ? Equivalently, is it true that for all i ≥ 0, the
coproduct ∆ci is a linear combination of terms of the form c ⊗ c′,
with c, c′ ∈ C?

Let’s check on the first terms:

∆c0 = 1⊗ 1 = c0 ⊗ c0

∆c1 = ⊗ 1+ 1⊗ = c0 ⊗ c1 + c1 ⊗ c0

∆c2 = c2 ⊗ 1+ 1⊗ c2 + 2 ⊗ = c2 ⊗ c0 + c0 ⊗ c2 + 2c1 ⊗ c1

∆c3 = c3 ⊗ 1+ 1⊗ c3︸ ︷︷ ︸
c3⊗c0+c0⊗c3

+ 4 ⊗ + 4 ⊗ + 2 ⊗ + ⊗︸ ︷︷ ︸
c21⊗c1+3c1⊗c2+2c2⊗c1

Observe that, in the four equations above, each term of the coproduct is
“directly” of the form c⊗c′, with c, c′ ∈ C. The next case is more interesting:
we need to re-arrange the terms (by grouping some of them together) to
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obtain what we want. We have:

∆c4 = c4 ⊗ c0 + c0 ⊗ c4 + 8 ⊗ + 8 ⊗ + 8 ⊗ + 4 ⊗ + 4 ⊗ + 4 ⊗

+4 ⊗ + 4 ⊗ + 4 ⊗ + 2 ⊗ + 2 ⊗
= c4 ⊗ c0 + c0 ⊗ c4 + 2c1c2 ⊗ c1 + 3c2

1 ⊗ c2 + 3c2 ⊗ c2

+ c1 ⊗
(
16 + 4

)
︸ ︷︷ ︸

=4c1⊗c3

+
(
8 + 2

)
⊗ c1︸ ︷︷ ︸

=2c3⊗c1

Will that always work? Yes! In fact we have:

Proposition 1.1. For all n ≥ 0 we have:

∆cn =
n∑

k=0

P n
k ⊗ ck

where the (P n
k )’s are defined by induction:

P n+1
k+1 =

n−k∑
i=0

P i
0P

n−i
k .

It follows that the algebra generated by the ci’s is a sub-Hopf-algebra.

Observe that the proposition follows by an immediate induction.
Exercise: What is the base case of this induction?

2 Another example

This time we consider the equation:

X = 1− xB+

(
1

X

)
.

Again, X is a formal power series in x with coefficients in T . Observe that
the series X defined in this way has constant coefficient 1 (and that there
is no problem with the inverse 1

X
). Again we can compute by hand the first

few terms:

X = 1− x − x2 − x3
(

+
)
− x4

(
+ 2 + +

)
+ O(x5).
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Again we write X =
∑

n≥0 cnx
n and we consider the subalgebra generated

by the cn’s. Is it a sub-Hopf-algebra... → yes! For example, we have:

∆c0 = c0 ⊗ c0

∆c1 = c0 ⊗ c1 + c1 ⊗ c0

∆c2 = c2 ⊗ c0 + c0 ⊗ c2 − c1 ⊗ c2

∆c3 = c3 ⊗ c0 + c0 ⊗ c3 + (−c2 + c2
1)⊗ c1 − 3c1 ⊗ c2

∆c4 = c4 ⊗ c0 + c0 ⊗ c4 −
(
⊗ + ⊗ + ⊗ + 2 ⊗ + 2 ⊗ + 2 ⊗ +

2 ⊗ + 2 ⊗ + 2 ⊗ + ⊗ + ⊗ + 3 ⊗ + 3 ⊗ + ⊗
)

= c4 ⊗ c0 + c0 ⊗ c4 − c3
1 ⊗ c1 + 2c1c2 ⊗ c1 + 6c2

1 ⊗ c2 − 3c2 ⊗ c2 − 5c1 ⊗ c3 − c3 ⊗ c1

3 Some results

Now that we have seen two magical examples, let us state some results.
Recall that in one previous lecture we have seen that the B+ operator is a
1-cocycle for the Hochschild cohomology. We have:

Theorem 3.1 (Bergbauer, Kreimer, 2005). Let H be a connected graded
Hopf algebra which is either free or free-commutative as an algebra. Let
(Bdn

+ )n∈N be a collection of 1-cocycles fo the Hochschild cohomology1. Then
the combinatorial Dyson-Schwinger equation:

X = 1+
∞∑

n=1

xnwnB
dn
+ (Xn+1)

has a unique solution X = X(x) =
∑
n≥0

cnx
n given by:

c0 = 1

cn =
n∑

m=1

wmBdm
+

 ∑
k1+k2+···+km+1=n−m,ki≥0

ck1ck2 . . . ckm+1


and the cn generate a sub-Hopf-algebra, with:

∆cn =
n∑

k=0

P n
k ⊗ ck

1in the two previous examples, we had only one operator, i.e. Bdn
+ = B+ for all n.
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where P n
k =

∑
l1+l2+···+lk+1=n−k

cl1cl2 . . . clk+1
.

Exercise: Find an elementary inductive proof of this theorem, which is
less than 2 pages (the current proof is a complicated two-pages induction).

Theorem 3.2 (Foissy, 2007). Let P =
∑∞

n=0 pnx
n be a formal power series

with constant term p0 = 1. Then the equation:

XP = B+(P (XP ))

in the Connes-Kreimer algebra T has a unique solution XP =
∑∞

n=0 an, where
for all n ≥ 0, an ∈ T is homogeneous of size n. Moreover, the following are
equivalent:

1. The algebra generated by the ai’s is a sub-Hopf-algebra;

2. ∃(α, β) ∈ Q2 such that (1− αβx)P ′(x) = αP (x);

3. ∃(α, β) ∈ Q2 such that:

a. P (x) = 1 if α = 0,

b. P (x) = eαx if β = 0,

c. P (x) = (1− αβx)−
1
β else.

Moreover, there is an analogous statement in the non-commutative case.

Remark: Theorems 3.1 and 3.2 are different. In the first one, there is a
variable x, whereas in the second one there is not (and the terms in the ex-
pansion are only grouped according to their size). What difference does
a counting variable make? Let’s consider an example:

Example-A: Consider the equation:

Y = 1+ xB+(Y 2) + x2B+(Y 3).

This equation is of the type of Theorem 3.1, so we know that we have a
good sub-Hopf-algebra. Combinatorially, we can think of this equation as
describing certain trees with “two types of nodes” (or two colours) to which
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we assign different weights (different powers of x). As before we can expand
and find:

Y = 1+ x + x2( + 2 ) + x3( + 2 + 4 + 3 ) + x4(2 + 4 + 4

+6 + 4 + 2 + 3 + 3 + 2 ) + O(x5).

Exercise: check that if we note Y =
∑

ckx
k then:

∆c3 = c3 ⊗ c0 + c0 ⊗ c3 + c2
1 ⊗ c1 + 2c2 ⊗ c1 + 3c1 ⊗ c2,

∆c4 = c4 ⊗ c0 + c0 ⊗ c4 + 2c1c2 ⊗ c1 + 2c3 ⊗ c1 + 3c2
1 ⊗ c2 + 2c2 ⊗ c2 + 4c1 ⊗ c3.

Example-B: Now we consider the same ”combinatorial equation” as in
Example-A, but just count by the number of vertices (in the spirit of Theo-
rem 3.2). Let’s write Y = 1+ 2W so that

1+ 2W = 1+ B+((1+ 2W )2) + B+((1+ 2W )3).

Using the linearity of B+, we obtain:

W = B+(1+ 5W + 8W 2 + 4W 3),

so from Theorem 3.2 we know that this is not the correct form to generate
a sub-Hopf-algebra. This can also be checked directly as follows. First, let’s
write the expansion:

W = ︸︷︷︸
a1

+ 5︸︷︷︸
a2

+ 8 + 25 + 4︸ ︷︷ ︸
a3

+ 40 + 80 + 225︸ ︷︷ ︸
a4

+ . . . .

Now let us try to “check” as before all the ∆ci’s. Clearly we have no problems
for i = 0, 1, 2. For i = 3, we obtain

∆a3 = a3 ⊗ 1+ 1⊗ a3 +
41

5
a1 ⊗ a2 + 5a2 ⊗ a1,

so we still have no problem, even if the fraction 41
5

already tells us that things
are not very nice. Actually the first problem appears for i = 4. Indeed, let
us consider the (deg1)⊗ (deg3) part of ∆a4. We have after computation:

∆a4 = 92 ⊗ + 385 ⊗ +
(
terms not of type (deg1)⊗ (deg3)

)
6



and we see that the two terms are not in the correct ratio to be a scalar factor
of a1 ⊗ a3. Therefore (as we already knew from Theorem 3.2) the algebra
generated by the ai’s is not a sub-Hopf-algebra.

Exercise/Research problem: Clean this up! For example, give a Foissy-
type theorem in the case of vertices with different weights.

4 Systems (of colored rooted trees, of Feyn-

man graphs...)

I (Karen Yeats) am principally interested in systems of the form:

Xr = 1+ sgn(sr)
∑

k

xkBk,r
+

(
XrQk

)
(1)

where Q =
∏

r

(Xr)sr and (Xr) is a collection of formal power series in x.

Typically, the index r will run over all possible external leg structures of
certain Feynman graphs. The quantity Q is called the “invariant charge”.

Note: The equation above is possibly considered after taking some appro-
priate quotient (in the spirit of the previous lecture).
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Example: Consider the following system in the QED theory:

• X = 1 + xB+


(

X

)3

(X )2 X

+ xB+ (. . . ) + . . .

= 1 +
∑

γ primitive with external

structure

x|γ|Bγ
+


(

X

)1+2|γ|

(X )
|γ|

(X )2|γ|

 .

• X = 1− xB+


(

X

)2

(X )2



• X = 1− xB+


(

X

)2

X X

 .

Note that for this system the invariant charge is: Q =

(
X

)2

X (X )2

We finish this lecture by mentioning another theorem of Foissy that deals
with systems of equations and coloured trees. We will not state the theorem
exactly, rather give an idea of what it says:

Theorem 4.1 (Foissy, 2010). We consider coloured trees, with n colours.
We let Bd

+ be the same operator B+ as before except that it gives the colour
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d to the root. Consider the system of equations:
X1 = B1

+(F1(X1, X2, . . . , Xn))
X2 = B2

+(F2(X1, X2, . . . , Xn))
. . .

Xn = Bn
+(Fn(X1, X2, . . . , Xn))

where F1, F2, . . . Fn are formal power series in n indeterminates. Then [Foissy
2010] describes the cases in which the solution generates a sub-Hopf-algebra.

What about systems of the type of Equation (1)??

→ There are ideas in the “anatomy” paper by Kreimer.

→ Walter van Suijlekom has done things rigourously for scalar field theory,
QED, QCD.

Exercise/Research problem:

→ A Foissy-type theorem for these systems?.

→ Give an “if and only if” condition for what Hopf ideals give sub-Hopf-
algebra for B+.
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Renormalization Hopf Algebras V: The B+ Lie
Algebras

Karen Yeats
(Scribe: Pinar Colak)

May 27, 2010

1 The Linear Story

First consider the following example:

X = 1 + xB+(X) X = 1 + x + x2 + x3 + · · · =
∑

k≥0 ckx
k. Thus ck

is the tree which is just a chain of k vertices and ∆ck =
∑k

l=0 cl ⊗ ck−l.
This is called the ladder Hopf algebra L and is isomorphic to the Hopf

algebra of symmetric functions. The Hopf algebra of symmetric functions
is generated (for instance) by hk, the complete symmetric functions. i.e.,
h2 = x2

1 + x1x2 + x2
2 + x1x3 + · · · and has ∆(hk) =

∑k
l=0 hl ⊗ hk−l.

Now let’s play our standard game of looking at the Lie algebra of the prim-
itive elements of the dual of an interesting Hopf algebra. Consider P (T ∗). It
is generated by Zk = Zck and

[Zi, Zj]ck = (Zi ⊗ Zj)− (Zj ⊗ Zi)∆ck

= (Zi ⊗ Zj − Zj ⊗ Zi)
k∑
l=0

cl ⊗ ck−l = 0.

So it is an abelian Lie algebra, and not so interesting from this van-
tage point. However, you can still go somewhere interesting with this. You
can add tree operation to the Lie algebra, like B+, or the grading operator
Y . For examples, please see arXiv: hep-th/0201157, math/0309042, math-
ph/0408053.
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2 The Foissy Story

We looked at Foissy’s results on sub Hopf algebras last time, now consider the
analogous Lie story in the cases most interesting to us. For Foissy’s setup,
please see arXiv:0709.1204. He gives necessary and sufficient conditions for
the solution of the equation

W = β + (P (W ))

to generate a sub Hopf algebra. The sub Hopf case which is most interesting
to us is when

P (h) = (1− αβh)−1/β.

The other cases can be found in the reference. We get the linear example of
the previous section for X = 1 +W , α = 1, β = −1.

Now consider α = 1 and β 6= −1. We denote this Hopf subalgebra by
Aα,β. We have two important special cases:

• X + 1− xB+( 1
X

). To put this into Foissy’s framework let X = 1−W
then W = xB+((1−W )−1). So this is α = 1, β = 1.

• X = 1+xB+(X2). To put this into Foissy’s framework let X = 1+W
then W = xB+((1 +W )2). So this is α = 1, β = −1/2.

Foissy says that all the A1,β with β 6= −1 are isomorphic to the Faà di
Bruno Hopf algebra.

Definition 1. Let F as a ring be the polynomial ring in countably many
variables Yi, i ≥ 1. Let Y = 1 +

∑∞
n=1 Yn then ∆(Y) =

∑∞
n=1(Y)n+1 ⊗ Yn.

This makes F into a Hopf algebra called the Faà di Bruno Hopf algebra.

This definition comes from the following. Let G be a ring of formal series
over K in one variable h which are of the form h +

∑
n≥1 anh

n+1. Then let
Yi : G → K be defined by h +

∑
n≥1 anh

n+1 7→ ai. Define ∆(f)(P ⊗ Q) =
f(Q ◦ P ).

Exercise. Show that these two expressions for ∆ are equivalent.
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Now we calculate the bracket on P (F∗). First let Zi = ZYi
. Note that

[Zi, Zj] is some multiple of Zi+j by the grading. So we get

[Zi, Zj](Y) = (Zi ⊗ zj − Zj ⊗ Zi)∆(Y)

= (Zi ⊗ zj − Zj ⊗ Zi)
∞∑
n=0

(Y)n+1 ⊗ Yn

= Zi(Y)j+1 − Zj(Y)i+1 = j + 1− (i+ 1) = j − i.

Hence [Zi, Zj] = (j − i)Zi+j.
Foissy calls this the Faà di Bruno Lie algebra.
It is also half of the Witt algebra.

Definition 2. The Witt algebra is the Lie algebra of meromorphic vector
fields on the Riemann sphere which are holomorphic except at 2 fixed points.
It is generated by Ln = −Zn+1 ∂

∂Z
, where n ∈ Z. For these generators we get

[Lm, Ln] = (m− n)Lm+n.

Let’s see this in our 2 examples:
For X = 1 + xB+(X2), recall

c0 = 1, c1 = , c2 = 2 , c3 = + 4 , c4 = 4 + 2 + 8 , and

4c1 = c1 ⊗ c0 + c0 ⊗ c1,
4c2 = c2 ⊗ c0 + c0 ⊗ c2 + 2c1 ⊗ c1,
4c3 = c3 ⊗ c0 + c0 ⊗ c3 + 3c1 ⊗ c2 + (c21 + 2c2)⊗ c1,
4c4 = c4 ⊗ c0 + c0 ⊗ c4 + (2c3 + 2c1c2)⊗ c1 + (3c21 + 3c2)⊗ c2 + 4c1 ⊗ c3.

Let’s calculate some brackets (Zi = Zci).

[Z1, Z2]c3 = 3− 2 = 1(= j − i), [Z1, Z3]c4 = 4− 2 = 2, etc...

Now let’s consider the other example: X = 1− xB+( 1
X

).
Recall

c0 = 1, c1 = − , c2 = − , c3 = −( + ), c4 = −( + +2 + ), and
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4c3 = c3 ⊗ c0 + c0 ⊗ c3 + (−c2 + c21)⊗ c1 − 3c1 ⊗ c2,
4c4 = c4 ⊗ c0 + c0 ⊗ c4 + (−c3 − c31 + 2c2)⊗ c1 + (−3c2 + 6c1)⊗ c2 − 5c1 ⊗ c3.

Then

[Z1, Z2]c3 = −3+1 = −2 = (−2)(j−i), [Z1, Z3]c4 = −5+1 = −4 = (−2)(j−i), etc...

This is the general picture for α = 1, β 6= 1. Foissy gives explicit isomor-
phism A1,β

∼= A1,β′ , β 6= 1, β′ 6= 1. He gives the coproducts explicitly. He
also gives an explicit isomorphism with the Faà di Bruno Hopf algebra.

Exercise. Trace through the isomorphism for the two given examples to
write Yn as trees.

Research Problem. Answer the following questions.

• What sense can we make Zi for i < 0 from the Witt algebra?

• What can the theory of Witt algebras say about trees or physics?

• Can trees say anything about Witt algebras?

3 The Generalized Witt Story

In Foissy’s systems (arXiv:0909.0358) he gets 3 cases:

1. Path Lie algebras,

2. Iterated extensions of Faà di Bruno Lie algebras,

3. Iterated extensions of an abelian Lie algebra.

Foissy gives explicit expressions for the brackets. But Foissy’s systems
aren’t really the sort of systems we’re most interested in. Some playing
around with some examples suggests that we may want to look at generalized
Witt algebras. Without going into any details, the braket for these looks like

[tx∂1, t
y∂2] = tx+y(∂1(y)∂2 − ∂2(x)∂1)

If we have only one ∂i and it is the grading operator we get what we had
before. In the more general case it should be something about the number of
intertions of a particular sort, or the number of intertion places for a graph
of a given external structure. Unfortunately, there was no time to show a
worked example, or to even properly explain these objects.
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