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There are several results for functions in a single complex variable which generalise naturally to Cn.
We look at Cauchy’s integral formula and some of its consequences in several complex variables.

For many of the proofs, we work over a region called a polydisc, which is a generalisation of the disc.
Let ρ = (ρ1, ..., ρn). Then the open n-polydisc centred at z0 and with radius vector r is defined to be

nD(z0, ρ) = {z ∈ Cn : |zi − z0,i| < ρi}.

The polydisc has two boundaries which we might need. The first is the natural boundary, defined as

∂nD(z0, ρ) =

n⋃
i=1

nΓi(z0, ρ),

where

nΓi(z0, ρ) = {z ∈ Cn : |zi − z0,i| = ρi, |zj − z0,j | ≤ ρj j 6= i}.
The second is the skeleton

nΓ(z0, ρ) =

n⋂
i=1

nΓi(z0, ρ).

Theorem 1. If f is a function continuous in a neighbourhood U of the closed polydisc nD̄(z0, ρ) and
holomorphic in each variable zi at each point of U , then

f(z) =

(
1

2πi

)n ∫
|ζn−zn|=ρn

· · ·
∫
|ζ1−z1|=ρ1

f(ζ1, ..., ζn)dζ1...dζn
(ζ1 − z1)...(ζn − zn)

,

for any z ∈ nD(z0, ρ).

Proof. Fix the first n− 1 variables and and apply the single variable CIF to the resulting function of zn.
Repeat inductively, working from zn to z1 to get the result.

Observation 1. Observe that we could choose to start with any variable, and work through them as we
wish. This implies that we can apply Fubini’s theorem, allowing us to commute the order of integration
in the iterated integral. The question to ask here is whether our hypotheses are strong enough to allow
the application of Fubini’s theorem.

As long as f is measurable on each circle (it’s continuous in a neighbourhood containing each circle,
and continuous functions are Borel functions) and each circle is a complete measure space (which it is -
consider it as a homeomorphic map of a line segment) then we can apply Fubini’s theorem.

Observation 2. This is the most obvious generalisation of CIF, but for singularity analysis it’s not
great. We will look into a better generalisation towards the end of the seminar series.

We now turn to some results which are consequences of CIF. First is Osgood’s lemma. For an open
set U , we take H(U) to be the set of functions holomorphic on U .

Lemma 1. (Osgood’s Lemma) Let U ⊆ Cn be an open set and f ∈ H(U). Then for any polydisc

nD(z0, ρ) ⊆ U there is a power series

f̂z0 =
∑

α1+...+αn≥0

cα1,...,αn(z1 − z0,1)α1 ...(zn − z0,n)αn

that converges uniformly to f on any compact set in nD(z0, ρ).
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Proof. Fix z0 in U and choose two radius vectors ρ, r ∈ Rn+ so that we have a nesting of compact polydiscs

nD̄(z0, ρ) ⊂ nD̄(z0, r) ⊂ U .
We make the substitution of

1

(ζ1 − z1)...(ζn − zn)
=

∑
α1+...+αn≥0

(z1 − z0,1)α1 ...(zn − z0,n)αn

(ζ1 − z0,1)α1+1...(ζn − zn)αn+1
,

into the CIF. This comes from the Taylor series expansion of the rational function on the left. This series
converges uniformly in ζ and z for |zi − z0,i| ≤ ρi < ri = |ζi − z0,i|, and therefore we can commute the
summation and iterated integrals to integrate the series termwise, giving a series in z which is uniformly
convergent for z ∈ nD̄(z0, r) with coefficients

cα1,...,αn
=

(
1

2πi

)n ∫
|ζn−zn|=rn

· · ·
∫
|ζ1−z1|=r1

f(ζ1, ..., ζn)dζ1...dζn
(ζ1 − z1)α1+1...(ζn − zn)αn+1

.

Lemma 2. Let z0 ∈ Cn and fz0 =
∑
α1+...+αn≥0 cα1,...,αn(z1− z0,1)α1 ...(zn− z0,n)αn be the power series

bounded for some radius vector r ∈ Rn+. Then fz0 converges on any compact subset of nD(z0, |r − z0|).

Proof. This is left as an exercise.

Lemma 3. Let U ⊂ Cn be open and f ∈ H(U). Then all partial derivatives of f belong to H(U).

Proof. To check this, we must first check that all the partial derivatives of a holomorphic function exist.
Since f is holomorphic on U , and therefore holomorphic in each variable separately at every point of U ,
this is fine. Then we must check the Cauchy Riemann equations in several variables to show that these
derivatives are holomorphic.

Theorem 2. (Cauchy’s Inequality) Let U ⊂ Cn be open, f ∈ H(U) and f continuous on Ū . For any

nD(z0, ρ), if for all z ∈n Γ(z0, ρ), |f(z)| ≤ R, then for all α ∈ Nn we have∣∣∣∣ 1

α1!...αn!
∂α1
z1 ...∂

αn
zn f(z0)

∣∣∣∣ ≤ R

ρα1
1 ...ραn

n
.

Proof. This is proved by looking at the uniformly convergent PS representation given by Osgood’s
Lemma, which tells us

∂α1
z1 ...∂

αn
zn f(z0) = α1!...αn!cα1,...,αn

.

By rearranging and making the substitution for cα1,...,αn
given by Osgood’s lemma, we obtain an upper

bound by taking the integral of the function’s maximum modulus on the skeleton nΓ(z0, ρ). This gives
the result

|cα1,...,αn
| ≤ 1

(2πi)n
(2πiρ1)...(2πiρn)R

1

ρα1+1
1

...
1

ραn+1
n

=
R

ρα1
1 ...ραn

n
.

Theorem 3. Let D be a domain in Cn and f ∈ H(D). If there exists z0 ∈ D such that f and all partial
derivatives of f vanish at z0, then f ≡ 0 on D.

Proof. By developing f as a power series at a point other than z0 in D, we can show that the coefficients
must equal zero for f and all partial derivatives.

The last three results, the maximum modulus principle, Liouville’s theorem and Schwarz’s lemma,
are related and so we state them together.

Theorem 4. (Maximum modulus principle) Let U ⊂ Cn be a connected open set. If f ∈ H(U) and |f |
attains a maximum on U , then f is constant.

Theorem 5. (Liouville’s theorem) Let f ∈ H(Cn). If f is bounded then f is constant.
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Lemma 4. (Schwarz lemma) Let D =n D(~0, ~r), where ~x = (x, x, ..., x). If f : D → C is holomorphic
with f(~0) = 0, |f(z)| ≤M for all z ∈ D, then

|f(z)| ≤ ||z||
rn

M ∀z ∈ D.

We begin by outlining two proofs of the MMP.

Proof. (Maximum modulus principle) The first proof uses the open mapping theorem, which we state:
Let U ⊂ Cn be connected. If f ∈ H(U), then f maps open sets to open sets.
Suppose that f is not constant and that there exists some z0 ∈ U such that |f(z0)| = maxz∈U |f(z)|.

We apply the open mapping theorem to an open set V containing z0. This gives an open set containing
f(z0) with elements of strictly greater modulus, and we arrive at a contradiction.

The second uses the CIF.
Suppose that M = |f(z0)| = maxz∈U |f(z)|. Then a consequence of the CIF is

f(z0) =
1

V ol(D(z0, r))

∫
D(z0,r)⊂U

f(ζ)dV (ζ).

If |f(z)| = |f(z0)| in D(z0, r) then f is constant on D and can be analytically continued to be constant
on U . So suppose that f is not constant on D(z0, r). Then there is some disc D(z1, r1) ⊂ D(z0, r) on
which f(z) < M − ε. Thus

M · V ol(D(z0, r)) =

∫
D(z0,r)\D(z1,r)

f(ζ)dV (ζ) +

∫
D(z1,r1)

f(ζ)dV (ζ)

≤ M(V ol(D(z0, r))− V ol(D(z1, r1))) + (M − ε)V ol(D(z1, r1)),

arriving at a contradiction.

Exercise: If |f | constant on U , then f constant.

Proof. (Liouville’s theorem) Let f be a bounded function holomorphic on Cn. Then

|f(z)− f(z0)| = |z||fz0 − f(z0)| = |z||P |,

is bounded, where fz0 is the power series for f developed around z0 and f(z0) is the first term in the
series, thus allowing the factor of |z| on the right. By taking |z| → ∞ any way, we find that |P | → 0,
since f bounded implies that |f(z)− f(z0)| is bounded.

Thus there exists some radius vector ρ such that on D(z0, ρ), |P | attains its max, so by the MMP, P
is constant on Cn, giving P = 0 and f(z) = f(z0) for all z.

Proof. (Schwarz lemma) Define

g(z) =
f(z)

z
.

This is legitimate, since f(~0) = 0, implying a zero constant term in the PS representation of f . Thus
g(0) is defined and g is holomorphic on D.

Take z ∈ D. Then there is some radius ρ such that r > ρ > 0 and z ∈ D(~0, ~ρ). By the MMP, g will
only obtain a maximum on the boundary of D(~0, ~ρ). Thus, there exists a zρ ∈ ∂D(~0, ~ρ) such that

|g(z)| =
∣∣∣∣f(z)

z

∣∣∣∣ ≤ ∣∣∣∣f(zρ)

zρ

∣∣∣∣ ≤ M

rn

giving the result.
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