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Today’s lecture is based upon Section 3 of [1].
We let C be a combinatorial class with d − 1 parameters being counted and r ∈ Nd be a d-dimensional

multi-index. We then have the multivariate generating function for C

F (z) = arz
r.

which for simplification purposes is always of the form

F (z) =
G(z)

H(z)
,

G,H analytic, H(0) 6= 0. We are then interested in finding an asymptotic formula for ar of the form

ar ∼
∑

z∈βcontribr̄

formula(z). (1)

as |r| → ∞ and βcontribr̄ is a set of contributing critical points dependent on the direction of r, denoted r̄.
Indeed, it is useful to separate r into a scale parameter |r|, a positive real number, and a direction r̄,

which is an element of real projective space. While it is true that r ∈ Rd, it is sometimes useful to consider
it in Cd or as an element of real or complex projective space. In the source [1], it is noted that r could be
anywhere in the following diagram, where r̂ ∈ ∆d−1 is the projection of r̄ in the real d− 1 simplex.

O → Rd → Cd
¯ ↓ ¯ ↓ ¯ ↓
Ō → RPd−1 → CPd−1

ˆ ↓
∆d−1

Suppose that F is a rational function for simplicity. Then let V = {z : H(z) = 0} be the pole variety of
F . Then the process of finding the asymptotics is as follows.

1. Asymptotics in the direction r̄ are determined by the geometry of V near a finite set βcritr̄ of critical
points.

2. We then reduce this set further to βcontribr̄ ⊆ βcritr̄ of contributing critical points, usually a single
point.

3. We determine both of the above sets by a combination of algebraic and geometric criteria.

4. Critical points are either smooth, multiple or bad.

5. Corresponding to each smooth or multiple point, z, is an asymptotic expression for ar which is com-
putable in terms of G and H at z.
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These steps culminate in the meta-formula (1), which is different for multiple points and smooth points.
There is no formula for bad points.

Central to the derivation is the Cauchy Integral Formula

ar =
1

(2πi)d

∫
T

z−r−1F (z)dz,

where T is a torus about the origin, in which each circle is of sufficiently small radius in each coordinate. The
main idea is to replace the torus T by a product T1 × T2, where the inner integral over T1 is a multivariate
residue, and the outer integral over T2 is a saddle point bound. This leads to a complete asymptotic series
which may be read off in a straightforward manner. We don’t do this in this document, but instead show
an application of the results to the class of binomial coefficients, which are well known and will provide a
hook for readers.

Before we do move on, a brief note about the method. The main tool that is used is a Whitney strati-
fication of the pole variety V. For rational F , this will give quickly the set βcritr̄ as a finite union of zero
dimensional varieties and elimination theory gives minimal polynomials in an automatic way. The CIF is
then reduced to a sum of integrals over Ci:∑

ni

∫
Ci

z−r−1F (z)dz;

where the Ci are quasi-local cycles near z and T =
∑
niCi (we think of ni like a winding number). By

considering the height function associated with the stratification, we are then able to reduce to the smaller
set βcontribr̄ ⊆ βcritr̄. From here geometry is required and the answer will differ based on whether the
critical points, z̄, are smooth (V is locally a manifold) or multiple (V is locally the union of finitely many
manifolds intersecting transversally). Finally, we define a linear space L(z).

Definition 1 Let S be a strata of V and z ∈ S. Then L(z) ∈ CPd−1 is the span of the projections of vectors
orthogonal to the tangent space of S at z.

All of this culminates, for us, in the following theorem, where z(r̄) is the solution z to the ’equation’
r̄ ∈ L(z).

Theorem 1 When d = 2 and G(z(r̄)) 6= 0,

ar,s ∼
G(x, y)√

2π
x−ry−s

√
yHy

sQ(x, y)
,

where (x, y) = z( ¯(r, s)) and

Q(x, y) = −(xHx)(yHy)2 − (yHy)(xHx)2 −
[
(yHy)2x2Hxy + (xHx)2y2Hyy − 2(xHx)(yHy)xyHxy

]
.

So, take B to be the class of binomial coefficients. This is a well known class, and has generating function

F (x, y) =
1

1− x− y
,

with ar,s =
(
r+s
r

)
.

The pole variety is the complex line V = {(x, y)|x + y = 1}. The numerator never vanishes, so we may
apply the above theorem. For any z, L(z) is the linear span of z [1, Prop 3.11]. Thus, for each r̄ in the

positive real orthant, we are able to find a unique z ∈ V solving r̄ ∈ L(z), namely z =
(

r
r+s ,

s
r+s

)
. An

application of the machinery that we outlined above shows that βcontribr̄ =
{(

r
r+s ,

s
r+s

)}
.
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We need only compute Q(x, y) and we’re done. We have H = 1 − x − y, Hx = −1 = Hy and all other
partial derivatives zero, so Q(x, y) = −xy(x+ y). Substituting all this into the above theorem gives

ar,s ∼
(
r + s

r

)r (
r + s

s

)s√
r + s

2πrs
.

This asymptotic expressionis valid as (r, s)→∞ uniformly if r/s and s/r remain bounded.
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