Chapter 5: Fourier-Laplace Integrals in more than 1 variable, Part 2 Summary

Talk: Brad Jones Notes: Sam Johnson

February 25, 2013

We continue Chapter 5 from the previous talk by Lily Yen, February 18. Recall, we wish to approximate the integral

$$I(\lambda) = \int_{\mathcal{C}} A(\mathbf{z}) e^{-\lambda \phi(\mathbf{z})} d\mathbf{z},$$

where A, ϕ are analytic functions of the vector \mathbf{z} along the countour \mathcal{C} , a *d*-chain in \mathbb{C}^d .

Recall when showing this for the single variable case, we made the assumption that the quadratic term in the Taylor expansion of ϕ was non-zero. This is replaced by the assumption that the Hessian matrix

$$\mathcal{H} := \left(\frac{\partial^2 \phi}{\partial z_j \partial z_k}\right)$$

is non-singular for the multi-variate case.

Last time, we saw the proof of the Fourier-Laplace theorem in the case of:

- (i) Standard phase, $\phi = z_1^2 + z_2^2 + \ldots + z_d^2$;
- (ii) ϕ has finitely many critical points;
- (iii) $Re\{\phi\}$ has a strict minimum.

We move on to completing the proof in full generality, following [1, Section 5.4].

Localisation

We wish to integrate $w = A(\mathbf{z})e^{-\lambda\phi(\mathbf{z})}d\mathbf{z}$ over a compact chain \mathcal{C} . We do so by localising the integral around the critical points of the integrand in order to approximate the value of the integral.

In order to do this, we extend the definition of a critical point to manifolds, and we'll see that we can deform the curve C so that $Re\{\phi\}$ is strictly positive, allowing us to apply the results from last weeks session.

Theorem 1 (Theorem 5.4.8, [1], critical point decomposition). Let \mathcal{M} be a compact stratified space of dimension real d, embedded in \mathbb{C}^d . Let A, ϕ be analytic functions defined on a neighbourhood containing \mathcal{M} . Suppose that ϕ has finitely many critical points on \mathcal{M} , all quadratically non-degenerate and in a strata of dimension d. Let G be the subset of these at which the real part of ϕ is minimized and assume, without loss of generality, that this minimal value is zero. Let \mathcal{C} be a chain representing \mathcal{M} . Then then the integral

$$I(\lambda) = \int_{\mathcal{C}} A(\mathbf{z}) e^{-\lambda \phi(\mathbf{z})} d\mathbf{z}$$

has asymptotic expansion

$$I(\lambda) \sim \sum_{l=0}^{\infty} c_l \lambda^{d/2-l}.$$

If A is nonzero at some point of G, then the leading term is given by

$$c_0 = (2\pi)^{-d/2} \sum_{\mathbf{x} \in G} A(\mathbf{x}) e^{\lambda \phi(\mathbf{x})} (\det \mathcal{H}(\mathbf{x}))^{-1/2}.$$

In order to prove Theorem 5.4.8, we're going to need to define a suitable class of chains and develop some geometric properties of them. This begins with stratified spaces.

Whitney Stratification overview

Let I be a partially ordered set. Then an I-decomposition of a topological space Z is a partition of Z into a disjoint union of sets $\{S_{\alpha}\}_{\alpha \in I}$, having the property

Definition 1. Let Z be a closed subset of the manifold $\mathcal{M} \subset \mathbb{R}^d$. A Whitney stratification of Z is an *I*-decomposition such that

(i) Each S_{α} is a manifold in RR^d

(ii) If

- (a) $\alpha < \beta$,
- (b) the sequences $\{x_i \in S_\beta\}, \{y_i \in S_\alpha\}$ converge to a point $y \in S_\alpha$,
- (c) the lines $x_i y_i = l_i$ converge to a line l, and
- (d) the tangent planes $T_{x_i}(S_\beta)$ converge to a plane T,

then l and $T_y(S_\alpha)$ are contained in T.

Some (non) examples of Whitney Stratifications

1. Let $Z = \overline{\mathbb{D}} = \{z \in \mathbb{C} \mid 0 \le |z| \le 1\}$, with stratification given by

- $I = \{0, 1\}$ with order <,
- $S_0 = \mathbb{S}_1 = \partial \overline{\mathbb{D}},$
- $S_1 = \overline{\mathbb{D}} \setminus \partial \overline{\mathbb{D}} = \mathbb{D}.$

We show the sequences x_i and y_i in Figure 1. The red sequence is y_i , and the blue sequence is x_i . Both converge on the black point z = 1, and all lines $x_i y_i$ are contained in the only tangent plane, \mathbb{C} .

Figure 1: The above stratification of $\overline{\mathbb{D}}$ is Whitney.

2. Let $X = x^2 + y(y - z^2)$, and consider the variety of X. We impose the following stratification on the variety of X:

• $I = \{0, 1\}$ with order <,

- $S_0 = z$ -axis,
- $S_1 = X \setminus S_0$.

In Figure 2, we show the variety and the sequences y_i in red, x_i in blue, their limit at the origin as a black point and the lines (represented by a segment) l_i in violet. This stratification is not Whitney, as the lines remain perpendicular to the tangent plane $T(x_i)$, the z - x-plane.

Figure 2: The given stratification for X is not Whitney

0.0.1 Stratified spaces

An important fact about stratified spaces is their local product structure: if p is contained in some strata S of \mathcal{M} , then p has a neighbourhood in \mathcal{M} in which \mathcal{M} is homeomorphic to $S \times X$, for some manifold X.

Definition 2. Let $f : \mathcal{M} \to \mathbb{C}$, and \mathcal{M} be a stratified space. The function f is smooth if it is smooth when restricted to each strata S.

Definition 3. A point $p \in \mathcal{M}$ is critical for a smooth function ϕ if and only if the restriction $d\phi|_S$ vanishes at p, where S is the strata containing p.

Proposition 2 ([1], Prop. 5.4.3). Every algebraic variety in \mathbb{R}^d and \mathbb{C}^d admits a Whitney stratification.

Example 3. • If \mathcal{M} is smooth, then (\mathcal{M}) is a Whitney stratification (WS).

- If V is any space with a finite subset E such that $V \setminus E$ is a smooth manifold. The strata $(V \setminus E, E)$ form a WS.
- An algebraic variety \mathcal{V} whose singular locus is a smooth manifold \mathcal{V}' admits a Whitney stratification $(\mathcal{V} \setminus \mathcal{V}', \mathcal{V}')$.

Tangent Vector Fields

The tangent space $T_{\mathbf{x}}(\mathcal{M})$ of a WS space \mathcal{M} at a point \mathbf{x} is defined to be the tangent space $T_{\mathbf{x}}(S)$ where S is the strata of \mathcal{M} containing \mathbf{x} .

When \mathcal{M} is embedded in and inherits the analytic structure of \mathbb{C}^d , then the tangent spaces fit together in a bundle. Each $T_{\mathbf{x}}(\mathcal{M})$ is then naturally identified with a subspace of $T_{\mathbf{x}}(\mathbb{C}^d)$, and a smooth section of a tangent bundle in \mathcal{M} is a smooth vector field $f : \mathcal{M} \to \mathbb{C}^d$ such that $f(\mathbf{x}) \in T_{\mathbf{x}}(S)$

Lemma 4 ([1], Lemma 5.4.4). Let f be a smooth section of the tangent bundle to S, ie, $f(\mathbf{s}) = T_{\mathbf{s}}(S)$ for $\mathbf{s} \in S$. Then $\mathbf{s} \in S$ has a neighbourhood in \mathcal{M} in which f can be extended to the smooth section of the tangent bundle of \mathcal{M} .

Proof. We use the local paramterisation $S \times X$. Then given $\mathbf{s} \in S$ we can transport a vector $r \in T_{\mathbf{s}}(S)$ to a tangent space $T_{(\mathbf{s},\mathbf{x})}(\mathcal{M})$. Extend f by $f(\mathbf{s},\mathbf{x}) = f(\mathbf{s})$.

The following two results are used in the proof of Theorem 5.4.8, we omit their proofs and refer to [1].

Lemma 5 ([1], Lemma 5.4.5). Let $\mathbf{x} \in S$ where S is a strata of \mathcal{M} . Suppose that \mathbf{x} is non-critical for a function ϕ . Then $\mathbf{r} \in T_{\mathbf{x}}(S \otimes U)$ such that $\operatorname{Re}\{\phi(\mathbf{r})\}$ is strictly positive at \mathbf{x} and there exists a continuous section f of the tangent bundle in a neighbourhood \mathcal{N} of \mathbf{x} such that $\operatorname{Re}\{d\phi(f(\mathbf{x}))\} > 0$ for all $\mathbf{x} \in \mathcal{N}$.

Lemma 6 ([1], Lemma 5.4.7). Let \mathcal{M} be a stratified space, and ϕ be a smooth function on \mathcal{M} with finitely many critical points. Then there is a global section f of the tangent bundle of \mathcal{M} such that $Re\{d\phi(f(\mathbf{x}))\} > 0$ and $d\phi(f(\mathbf{x})) = 0$ only when \mathbf{x} is a critical point.

Note: The reference to Lemma 5.4.7 in the proof of Lemma 5.4.7 is an error, it should refer to Lemma 5.4.6.

Sketch of Theorem 5.4.8. We use Lemma 5.4.7 to find a tangent vector field f, which gives rise to a differential flow.

The flow reduces the real part of ϕ everywhere except at the critical points. Consequently, it defines a homotopy H between the contour of integration C and a chain C on which the minima of the real part of ϕ occur precisely on the set G. The homotopy H then induces a chain homotopy $\partial C_H = C - C + \partial C \times \sigma$ where σ is a standard 1-simplex. Let ω denote the holomorphic d form $A(\mathbf{z}) \exp(-\lambda \phi(\mathbf{z})) d\mathbf{z}$. Because ω is a d form in \mathbb{C}^d , we have $d\omega = 0$. By Stoke's theorem,

$$0 = \int_{\mathcal{C}_H} d\omega$$

= $\int_{\partial \mathcal{C}_H} \omega$
= $\int_C \omega - \int_C \omega - \int_{\partial \mathcal{C} \times \sigma} \omega.$

The chain $\partial \mathcal{C} \times \sigma$ is supported on a finite union of spaces $S \otimes \mathcal{C}$ where S is a stratum, of dimension at most d-1. By Appendix A [1], ω vanishes over such a chain, therefore

$$\int_{\mathcal{C}} \omega = \int_{C} \omega.$$

Outside of a neighbourhood of G, the magnitude of the integrand is exponentially small, so we have shown that there are *d*-chains $C_{\mathbf{x}}$ supported on arbitrarily small neighbourhoods $\mathcal{N}(\mathbf{x})$ of each $\mathbf{x} \in G$ such that

$$I(\lambda) - \sum_{\mathbf{x} \in G} \int_{\mathcal{C}_x} \omega$$

is exponentially small. To finish the proof, we need to show that each integral in the above summation has an asymptotic series in decreasing powers of λ whose leading term is given as in the statement of this theorem.

The *d*-chain $C_{\mathbf{x}}$ may be parametrised by a map $\psi_{\mathbf{x}} : B \to \mathcal{N}(\mathbf{x})$, where *B* is the open unit ball in \mathbb{R}^d , and $\psi_{\mathbf{x}}$ maps the origin to \mathbf{x} . The real part of $\phi \circ \psi$ has a strict minimum at the origin, so we apply [1, Theorem 5.1.2]. The rest follows by calculation, the details of which are in [1].

References

 R. Pemantle and M. C. Wilson. Analytic Combinatorics in Several Variables (draft). Cambridge University Press, 2012.