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We continue Chapter 5 from the previous talk by Lily Yen, February 18. Recall, we wish to approx-
imate the integral

I(λ) =

∫
C
A(z)e−λφ(z)dz,

where A, φ are analytic functions of the vector z along the countour C, a d-chain in Cd.
Recall when showing this for the single variable case, we made the assumption that the quadratic

term in the Taylor expansion of φ was non-zero. This is replaced by the assumption that the Hessian
matrix

H :=

(
∂2φ

∂zj∂zk

)
is non-singular for the multi-variate case.

Last time, we saw the proof of the Fourier-Laplace theorem in the case of:

(i) Standard phase, φ = z21 + z22 + ...+ z2d;

(ii) φ has finitely many critical points;

(iii) Re{φ} has a strict minimum.

We move on to completing the proof in full generality, following [1, Section 5.4].

Localisation

We wish to integrate w = A(z)e−λφ(z)dz over a compact chain C. We do so by localising the integral
around the critical points of the integrand in order to approximate the value of the integral.

In order to do this, we extend the definition of a critical point to manifolds, and we’ll see that we can
deform the curve C so that Re{φ} is strictly positive, allowing us to apply the results from last weeks
session.

Theorem 1 (Theorem 5.4.8, [1], critical point decomposition). Let M be a compact stratified space of
dimension real d, embedded in Cd. Let A, φ be analytic functions defined on a neighbourhood containing
M. Suppose that φ has finitely many critical points on M, all quadratically non-degenerate and in a
strata of dimension d. Let G be the subset of these at which the real part of φ is minimized and assume,
without loss of generality, that this minimal value is zero. Let C be a chain representing M. Then then
the integral

I(λ) =

∫
C
A(z)e−λφ(z)dz

has asymptotic expansion

I(λ) ∼
∞∑
l=0

clλ
d/2−l.
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If A is nonzero at some point of G, then the leading term is given by

c0 = (2π)−d/2
∑
x∈G

A(x)eλφ(x)(detH(x))−1/2.

In order to prove Theorem 5.4.8, we’re going to need to define a suitable class of chains and develop
some geometric properties of them. This begins with stratified spaces.

Whitney Stratification overview

Let I be a partially ordered set. Then an I-decomposition of a topological space Z is a partition of Z
into a disjoint union of sets {Sα}α∈I , having the property

Definition 1. Let Z be a closed subset of the manifold M ⊂ Rd. A Whitney stratification of Z is an
I-decomposition such that

(i) Each Sα is a manifold in RRd

(ii) If

(a) α < β,

(b) the sequences {xi ∈ Sβ}, {yi ∈ Sα} converge to a point y ∈ Sα,

(c) the lines ¯xiyi = li converge to a line l, and

(d) the tangent planes Txi(Sβ) converge to a plane T ,

then l and Ty(Sα) are contained in T .

Some (non) examples of Whitney Stratifications

1. Let Z = D̄ = {z ∈ C | 0 ≤ |z| ≤ 1}, with stratification given by

• I = {0, 1} with order <,

• S0 = S1 = ∂D̄,

• S1 = D̄ \ ∂D̄ = D.

We show the sequences xi and yi in Figure 1. The red sequence is yi, and the blue sequence is xi. Both
converge on the black point z = 1, and all lines ¯xiyi are contained in the only tangent plane, C.

Figure 1: The above stratification of D̄ is Whitney.

2. Let X = x2 + y(y− z2), and consider the variety of X. We impose the following stratification on the
variety of X:

• I = {0, 1} with order <,
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• S0 = z-axis,

• S1 = X \ S0.

In Figure 2, we show the variety and the sequences yi in red, xi in blue, their limit at the origin as a
black point and the lines (represented by a segment) li in violet. This stratification is not Whitney, as
the lines remain perpendicular to the tangent plane T (xi), the z − x-plane.

Figure 2: The given stratification for X is not Whitney

0.0.1 Stratified spaces

An important fact about stratified spaces is their local product structure: if p is contained in some strata
S of M, then p has a neighbourhood in M in which M is homeomorphic to S ×X, for some manifold
X.

Definition 2. Let f : M → C, and M be a stratified space. The function f is smooth if it is smooth
when restricted to each strata S.

Definition 3. A point p ∈ M is critical for a smooth function φ if and only if the restriction dφ|S
vanishes at p, where S is the strata containing p.

Proposition 2 ([1], Prop. 5.4.3). Every algebraic variety in Rd and Cd admits a Whitney stratification.

Example 3. • If M is smooth, then (M) is a Whitney stratification (WS).

• If V is any space with a finite subset E such that V \E is a smooth manifold. The strata (V \E,E)
form a WS.

• An algebraic variety V whose singular locus is a smooth manifold V ′ admits a Whitney stratification
(V \ V ′,V ′).

Tangent Vector Fields

The tangent space Tx(M) of a WS spaceM at a point x is defined to be the tangent space Tx(S) where
S is the strata of M containing x.

WhenM is embedded in and inherits the analytic structure of Cd, then the tangent spaces fit together
in a bundle. Each Tx(M) is then naturally identified with a subspace of Tx(Cd), and a smooth section
of a tangent bundle in M is a smooth vector field f :M→ Cd such that f(x) ∈ Tx(S)

Lemma 4 ([1], Lemma 5.4.4). Let f be a smooth section of the tangent bundle to S, ie, f(s) = Ts(S)
for s ∈ S. Then s ∈ S has a neighbourhood in M in which f can be extended to the smooth section of
the tangent bundle of M.

Proof. We use the local paramterisation S ×X. Then given s ∈ S we can transport a vector r ∈ Ts(S)
to a tangent space T(s,x)(M). Extend f by f(s,x) = f(s).
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The following two results are used in the proof of Theorem 5.4.8, we omit their proofs and refer to
[1].

Lemma 5 ([1], Lemma 5.4.5). Let x ∈ S where S is a strata of M. Suppose that x is non-critical for a
function φ. Then r ∈ Tx(S⊗U) such that Re{φ(r)} is strictly positive at x and there exists a continuous
section f of the tangent bundle in a neighbourhood N of x such that Re{dφ(f(x))} > 0 for all x ∈ N .

Lemma 6 ([1], Lemma 5.4.7). Let M be a stratified space, and φ be a smooth function on M with
finitely many critical points. Then there is a global section f of the tangent bundle of M such that
Re{dφ(f(x))} > 0 and dφ(f(x)) = 0 only when x is a critical point.

Note: The reference to Lemma 5.4.7 in the proof of Lemma 5.4.7 is an error, it should refer to Lemma
5.4.6.

Sketch of Theorem 5.4.8. We use Lemma 5.4.7 to find a tangent vector field f , which gives rise to a
differentail flow.

The flow reduces the real part of φ everywhere except at the critical points. Consequently, it defines
a homotopy H between the contour of integration C and a chain C on which the minima of the real part
of φ occur precisely on the set G. The homotopy H then induces a chain homotopy ∂CH = C−C+∂C×σ
where σ is a standard 1-simplex. Let ω denote the holomorphic d form A(z) exp(−λφ(z))dz. Because ω
is a d form in Cd, we have dω = 0. By Stoke’s theorem,

0 =

∫
CH
dω

=

∫
∂CH

ω

=

∫
C

ω −
∫
C
ω −

∫
∂C×σ

ω.

The chain ∂C × σ is supported on a finite union of spaces S ⊗ C where S is a stratum, of dimension at
most d− 1. By Appendix A [1], ω vanishes over such a chain, therefore∫

C
ω =

∫
C

ω.

Outside of a neighbourhood of G, the magnitude of the integrand is exponentially small, so we have
shown that there are d-chains Cx supported on arbitrarily small neighbourhoods N (x) of each x ∈ G
such that

I(λ)−
∑
x∈G

∫
Cx
ω

is exponentially small. To finish the proof, we need to show that each integral in the above summation
has an asymptotic series in decreasing powers of λ whose leading term is given as in the statement of
this theorem.

The d-chain Cx may be parametrised by a map ψx : B → N (x), where B is the open unit ball in Rd,
and ψx maps the origin to x. The real part of φ ◦ ψ has a strict minimum at the origin, so we apply [1,
Theorem 5.1.2]. The rest follows by calculation, the details of which are in [1].
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