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Recall the classical saddle point integral result:∫
γ

A(z)e−λφ(z)dz ∼ A(z0)

√
2π

φ′′(z0)λ
e−λφ(z0),

where the asymptotic estimate is as λ → ∞ and z0 is chosen such φ′(z0) = 0 and the modulus of the
integrand is maximised at that point.

In the above integral, the function A(z) is called the amplitude of the integrand and φ(z) is called
the phase (when φ = iρ is purely imaginary, then ρ is the called the phase).

We follow the exposition of Sections 4.1 and 4.2 of [1] to show the following result in the case of real
amplitude and phase.

Theorem 1. Let A and φ be analytic on a neighbourhood N ⊂ C containing the origin. let

A(z) =

∞∑
j=l

bjz
j (bl 6= 0),

φ(z) =

∞∑
j=k

cjz
j (ck 6= 0)

be the power series for A and φ at 0. Let γ : [−ε, ε]→ C be a smooth curve with γ(0) = 0, γ′(0) 6= 0 and
<(φ(γ(t))) ≥ 0 with equality only for t = 0.

Define

I+(λ) :=

∫
γ|[0,ε]

A(z)e−λφ(z)dz,

I(λ) :=

∫
γ

A(z)e−λφ(z)dz,

C(k,m) :=
Γ
(

1+m
k

)
k

.

Then

I+(λ) ∼
∞∑
j=l

ajC(k, j)(ckλ)−(1+j)/k,

I(λ) ∼
∞∑
j=l

αjC(k, j)(ckλ)−(1+j)/k,

where:

1. aj and αj are explicitly constructed polynomials in bl, ..., bj , c
−1
k , ck, ..., ck+j−1 (al = bl and αj = 2aj

if j, k even, see [1] for more detail);

1



2. the kth root is determined by the principal root of x−1(ckλx
k)1/k, where x = γ′(0).

Before moving on to a proof for real amplitude and phase, we show that this is equivalent to the
classical first order approximation we gave at the beginning when l = 0, k = 2 and z0 = 0 and give an
example showing an application of this theorem to a generating function.

I(λ) =

∫
γ

A(z)e−λφ(z)dz

∼ αlC(k, l)(ckλ)−(1+l)/k

∼ αlC(2, 0)(c2λ)−(1)/2

∼ 2b0

(
Gamma(1/2)

2

)√
1

c2λ

∼ b0
√
π

√
1

φ′′(0)λ
2

∼ A(0)

√
2π

φ′′(0)λ
e−λφ(0).

Example 2. Let f(z) = (1− z)−1/2. The binomial theorem tells us

[zn]f(z) = (−1)n
(
−1/2

n

)
∼
√

1

πn
.

We prove this using our theorem. First, make the change of variables z = 1 − y2. Then dz = −2ydy,
and the Cauchy theorem states

fn =
1

2πi

∫
γ

z−(n+1)(1− z)−1/2dz,

=
1

2πi

∫
Γ

(1− y2)−(n+1)y−1(−2y)dy,

=
i

π

∫
Γ

(1− y2)−(n+1)dy.

Under the change of variables, we have two choices for the preimage of γ. We choose Γ to be the
circle centred at z = 1.

z = 1
γ Γ

−1 1

2 preimages

Since (1− y2)−n−1 = e−(n+1) log(1−y2), we get

φ(y) = log(1− y2),

φ′(y) =
−2y

1− y2
,

giving y = 0 as the critical point. We then deform Γ to Γ′ passing through 0. A change of variables
y = it gives

fn =
1

π

∫
(1 + t2)−(n+1)dt.
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Since φ(y) = φ(it) = t2−1/2t4 +O(t6), we get φ(it) ∼ t2 at the origin, so applying our theorem gives

fn ∼ 1

π

[√
2π

φ′′(0)n

]

=
1

π

√
2π

2n

=

√
1

πn
.

Real Integrands

When A and φ are real functions, we show that∫ ε

0

A(x)e−λφ(x)dx ∼
∞∑
j=l

ajλ
−(1+j)/k.

We prove this in three steps:

1. A and φ monomials;

2. φ monomial, A unrestricted;

3. A, φ unrestricted.

A, φ monomials

Let α, β be real, non-negative powers.
Substitute y = λxα to get∫ ∞

0

xβe−λx
α

dx =

∫ ∞
0

( y
λ

)β/α
e−y

(
1

α

y1/α−1

λ1/α

)
dy,

=
1

α
λ−(1+β)/α

∫ ∞
0

y
1+β
α −1e−ydy,

= λ−(1+β)/αC(α, β).

The last equality above is given by the definition of the Gamma function.
Now, the major contribution comes from a neighbourhood of zero: for any ε > 0, the contribution

from x ∈ (ε,∞) is exponentially small in λ, so∣∣∣∣∫ ∞
0

xβe−λx
α

dx− λ−(1+β)/αC(α, β)

∣∣∣∣
decays exponentially.

φ monomial, A unrestricted

Lemma 3. Let k, l > 0 with k ∈ Z. If A and φ are real valued piecewise smooth functions with
A(x) = O(xl) at x = 0 and φ(x) ∼ xk at x = 0 and non-vanishing on (0, ε], then∫ ε

0

A(x)e−λφ(x)dx = O(λ−(1+l)/k)

as λ→∞.

Proof. Pick r and s such that |A(x)| ≤ r|x|l and |e−λφ(x)| ≤ e(s−λ)|x|k on [0, ε]. The result follows from
bounding the absolute value of the integral using these bounds and the results for monomials above.

This allows us to prove the following.
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Lemma 4. Suppose A is a real function with

A(x) =

M−1∑
j=l

bjx
j +O(xM )

as x→ 0. Then ∫ ε

0

A(x)e−λx
k

dx =

M−1∑
j=l

bjC(k, j)λ−(1+j)/k +O(λ−(1+M)/k).

Proof. First,

A(x)−
M−1∑
j=l

bjx
j = O(xM ).

Multiply by e−λx
k

and integrate to get the result, giving the result for real amplitude and monomial
phase.

No restrictions

This requires a little more work than the previous two cases. A change of variables will reduce this case
to the previous lemma, but we require the following result (the analytic inversion lemma) to ensure that
we understand the asymptotic series of the change of variables.

Lemma 5. Let M ≥ 2 be an integer, and let

y(x) = c1x+ c2x
2 + ...+ xM−1x

M−1 +O(xM )

in a neighbourhood of the origin, c1 6= 0 (y(0) = 0 and y′(0) 6= 0). Then there is a neighbourhood of the
origin on which y is invertible. The inverse function has the expansion

x(y) = a1y + ...+ aM−1y
M−1 +O(yM )

where aj are polynomials in c1, c2, ..., cj , c
−1
1 .

Proof. Suppose c1 = 1. From y = x+O(x2) we see that y ∼ x at zero, hence x = y+O(x2) = y+O(y2).
Now let 2 ≤ n < M and suppose inductively that x = y + a2y

2 + + an1y
n1 + O(yn), where a2, ..., aj1

are polynomials in c2, ..., cj1 . Let a be an indeterminate, and plug in the value of y the statement of the
result to the quantity

x(y + a2y
2 + + an1y

n1 + ayn)

to get a polynomial in x ( mod xM ) whose coefficients are zero up to the xn term. These coefficients
may be written as

a− P (a2, ..., an−1, c2, ..., cn−1)

where P is a polynomial in the arguments given (and thus by induction in c2, ..., cn). Setting an equal
to this polynomial gives

x− (y +

∞∑
j=2

ajy
j) = O(xn+1),

completing the induction.
When n = M − 1, observing O(xm) = O(ym) completes the proof for c1 = 1. For c1 6= 1, repeat the

above, but represent x as a function of y/c1.

We now prove a modification of Theorem 1.

Theorem 6. Let A and φ be real functions, φ ∈ CM , with series (for k, l ≤M)

A(x) =

M−1∑
j=1

bjx
j +O(xM )

φ(x) = sumM−1
j=1 cjx

j +O(xM )
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as x→ 0, with bl, ck 6= 0. Then as λ→∞ we get

I(λ) =

∫ ε

0

A(x)e−λφ(x)dx ∼ sumM−1
j=1 ajC(k, j)(ckλ)−(1+j)/k +O(λ−(1+j)/k),

where the aj are polynomials in bl, ..., bj , c
−1
k , ck+1, ..., ck+j−1. The leading terms are given explicitly in

[1].

Proof. Let y = φ(x)1/k. Then from the power series expansion of φ above, we get

y = c
1/k
k x

(
1 +

ck+1

ck
x+ ...+

cm
ck
xM−k +O(xM+1−k)

)1/k

.

Using the Taylor series expansion (1 + u)1/k = 1 + u + O(u2), we find (note the departure from [1]
here, due to an error in their calculation)

y = c
1/k
k xk

M−k∑
j=0

djx
j +O(xM+1−k)


= c

1/k
k

M−k+1∑
j=1

djx
j +O(xM+2−k).


We use the previous lemma to get

x(y) =

M−k+1∑
j=1

ej

(
y

c
1/k
k

)j
+O(yM−k+2),

where the ej are polynomials in the dj , which are in turn polynomials in ck+1, ..., cj . Since φ is in CM ,
so is it’s inverse and we may differentiate term by term to get

x′(y) = c
−1/k
k

M−k+1∑
j=1

jej−1

(
y

c
1/k
k

)j−1

+O(yM−k+1).

Then

I(λ) =

∫ ε

0

A(x)e−λφ(x)dx

=

∫ y(ε)

o

Ã(y)e−λy
k

dy,

where Ã(y) = A((y))x′(y), or explicitly

Ã(y) = c
−1/k
k

M−k+1∑
j=1

b̃j

(
y

c
1/k
k

)j
+O(yM−k+1),

where b̃j is a polynomial in bl, ..., bj , c
−1
k , ck+1, ..., cj , evaluated in [1].

The result then follows from the previous case, where A is unrestricted and φ a monomial.
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