Strict minimal points via surgery

Talk: Nicolas Marie
Notes: Sam Johnson

March 18, 2013

We follow [1, Section 9.2], with some restrictions:

- we work in \mathbb{C}^{2} (since if we can generalise to $d=2$, we can generalise to any finite dimension);
- we assume $F=G / H$ is rational, ie $F \in \mathbb{C}(x, y)$.

Then the Cauchy integral formula becomes

$$
A_{r s}=\frac{1}{(2 \pi i)^{2}} \int_{T} \frac{F(x, y)}{x^{r+1} y^{s+1}} d x d y
$$

where $T=\left\{(x, y) \in \mathbb{C}^{2}:|x|=\epsilon_{1},|y|=\epsilon_{2}\right\}$ for $\epsilon_{1}, \epsilon_{2}$ sufficiently small.
Theorem 1. Let $F=G / H \in \mathbb{C}(x, y)$ and fix $\Delta_{*}=\left(r_{*}, s_{*}\right) \in \mathbb{R}_{+}^{2}$. Assume that $h_{*}: \mathbb{V} \rightarrow R R$, the height function on the singular variety of F, has a unique minimum (x_{0}, y_{0}) which is a smooth point. Then there is $\mathbb{D}_{1}\left(\right.$ resp $\left.\mathbb{D}_{2}\right)$ a disc of \mathbb{C} centred at x_{0} (resp y_{0}) such that

$$
a_{r s} \sim f_{*}(r, s)=\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{N} \times \mathbb{D}_{2}} \frac{F(x, y)}{x^{r+1} y^{s+1}} d x d y
$$

where $\mathcal{N}=\mathbb{D}_{1} \int\left\{x \in \mathbb{C}| | x\left|=\left|x_{0}\right|\right\}\right.$. Moreover, there is a holomorphic function $\phi: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ such that

$$
f_{*}(r, s)=\frac{1}{2 \pi i} \int_{\mathcal{N}} \frac{1}{x^{r+1} \phi(x)^{s}} \operatorname{Res}\left\{\frac{F(x, y)}{y}, y=\phi(x)\right\} d x .
$$

Definition 1. Let $H \in \mathbb{C}[x, y]$ and $\mathbb{V}=\left\{(x, y) \in \mathbb{C}^{2} \mid H(x, y)=0\right\}$. A point $\left(x_{0}, y_{0}\right) \in \mathbb{V}$ is smooth if $\left.\nabla H\right|_{\left(x_{0}, y_{0}\right)} \neq 0$.

Example 2. There are two examples.

1. Let $H(x, y)=1-x-y$. Then $\partial_{x} H=-1$ and $\partial_{y} H=-1$, so all points of H are smooth. From another point of view, H is flat everywhere (which we can see part of by looking at the section of $H(x, y)$ in \mathbb{R}, the red line in Figure ??).

Figure 1: The red line is the real portion of the variety of $H(x, y)=1-x-y$, which is globally flat
2. Let $H(x, y)=(1+x) x^{2}+y^{2}$. The real variety of H is shown in Figure ??. The non-smooth point is $(0,0)$, which is where the curve intersects itself. We could see this in two ways: 1) $(0,0)$ is a double point, so $\left.\partial_{x}(H)\right|_{(0,0)}=\left.\partial_{y}(H)\right|_{(0,0)}=0$; 2) $\partial_{y}(H)=2 y$, which is only zero if $y=0$, and $(0,0)$ is the only point of $\mathbb{V}(H)$ satisfying this.

Figure 2: The algebraic curve $H(x, y)=(1+x) x^{2}+y^{2}$

Theorem 3. Let $\mathbb{V}=\left\{(x, y) \in \mathbb{C}^{2} \mid H(x, y)=0\right\}$ be an algebraic curve and $\left(x_{0}, y_{0}\right) \in \mathbb{V}$ be a smooth point. Then there is a $\mathbb{D}_{1}\left(\right.$ resp $\left.\mathbb{D}_{2}\right)$, a disc of \mathbb{C} centred at x_{0} (resp y_{0}) and a holomorphic function $\phi: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ such that

$$
\mathbb{V} \cap\left(\mathbb{D}_{1} \times \mathbb{D}_{2}\right)=\left\{\left(x, \phi(x) \mid x \in \mathbb{D}_{1}\right\}\right.
$$

Proof. First, $\left(x_{0}, y_{0}\right)$ is smooth, so at least one of $\left.\partial_{x} H\right|_{\left(x_{0}, y_{0}\right)}$ and $\left.\partial_{y} H\right|_{\left(x_{0}, y_{0}\right)}$ is non-zero. Without loss of generality, we may assume that $\left.\partial_{h} H\right|_{\left(x_{0}, y_{0}\right)} \neq 0$.

Now, assume that there exists a function $f: \mathcal{D} \rightarrow \mathbb{C}$ with $\forall z \in \partial \mathcal{D}, f(z) \neq 0$. Then the claim is that

$$
\text { \# of zeroes of } f \text { in } \mathcal{D}=\frac{1}{2 \pi i} \int_{\partial \mathcal{D}} \frac{\partial_{z} f(z)}{f(z)} d z
$$

Indeed, if f has k roots in \mathcal{D}, then

$$
f(z)=\left(z-z_{1}\right)^{\alpha_{1}}\left(z-z_{2}\right)^{\alpha_{2}} \ldots\left(z-z_{k}\right)^{\alpha_{k}} \tilde{f}(z)
$$

where \tilde{f} is non-zero on \mathcal{D}. Taking the first derivative, we find

$$
d_{z} f=\sum_{i=1}^{k}\left[\alpha_{i}\left(z-z_{1}\right)^{\alpha_{1}} \ldots\left(z-z_{i}\right)^{\alpha_{i}-1} \ldots\left(z-z_{k}\right)^{\alpha_{k}} \tilde{f}(z)+\left(z-z_{1}\right)^{\alpha_{1}} \ldots\left(z-z_{k}\right)^{\alpha_{k}} d z \tilde{f}(z)\right]
$$

Thus,

$$
\frac{d_{z} f}{f}=\sum_{i=1}^{k}\left[\frac{\alpha_{i}}{z-z_{i}}+\frac{d_{z} \tilde{f}(z)}{\tilde{f}(z)}\right]
$$

Taking the integral of this, we take the residue of each summand at z_{i}. Since \tilde{f} is non-zero on \mathcal{D}, the second part of each summand is integrated to zero, and we get

$$
\frac{1}{2 \pi i} \int_{\partial \mathcal{D}} \frac{\partial_{z} f(z)}{f(z)} d z=\sum_{i=1}^{k} \alpha_{i}+0
$$

which is the number of zeroes, with multiplicity.
From this, if f has a unique zero in \mathcal{D}, z_{0} say, then the modified integral will allow us to find it:

$$
\frac{1}{2 \pi i} \int_{\partial \mathcal{D}} \frac{z \partial_{z} f(z)}{f(z)} d z=z_{0}
$$

Now, fix $x=x_{0}$ and $H\left(x_{0}, y\right)=H_{x_{0}}(y)$. We then have $H_{x_{0}}\left(y_{0}\right)=0$ and $\left.\partial_{y} H\right|_{\left(x_{0}, y_{0}\right)}$. Thus $H_{x_{0}}$ is not flat at y_{0}, so there is a neighbourhood of y_{0} in which $H_{x_{0}} \neq 0$. Take this neighbourhood to be \mathbb{D}_{2}. By our previous claim, we know that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\partial \mathbb{D}_{2}} \frac{\partial_{y} H_{x_{0}}(y)}{H_{x_{0}}(y)} d y=1 \Rightarrow \frac{1}{2 \pi i} \int_{\partial \mathbb{D}_{2}} \frac{y \partial_{y} H_{x_{0}}(y)}{H_{x_{0}}(y)} d y=y_{0} . \tag{1}
\end{equation*}
$$

Further, $H \in C C[x, y]$ tells us that $H_{x}(y)$ depends continuously on x.

Now, the function $H_{x_{0}}(y)$ is non-zero for all $y \in \partial \mathbb{D}_{2}$. By continuity, there must be some neighbourhood of x_{0}, call it \mathbb{D}_{1}, centred at x_{0} such that $\forall x \in \mathbb{D}_{1}, H_{x}(y) \neq 0 \forall y \in \mathbb{D}_{2}$.

So we can replace x_{0} in Statement 1 by any $x \in \mathbb{D}_{1}$, giving

$$
\phi(x)=\int_{\partial \mathbb{D}_{2}} \frac{y d_{y} H_{x}(y)}{H_{x}(y)} d y=y \in \mathbb{D}_{2}
$$

Fix $\Delta_{*}=\left(r_{*}, s_{*}\right) \in \mathbb{R}_{+}^{2}$. Then there is an associated height function on the singular variety of F, or on its amoeba

$$
\begin{aligned}
& h_{*}: \mathbb{V} \rightarrow \mathbb{R}, \quad(x, y) \mapsto-\left\langle\Delta_{*},(\log |x|, \log |y|)\right\rangle=-r_{*} \log |x|-s_{*} \log \mid y, \\
& h_{*}: R e \log \mathbb{V} \rightarrow \mathbb{R}, \quad(x, y) \mapsto-r_{*} \log |x|-s_{*} \log \mid y .
\end{aligned}
$$

Recall that for a function F, amoeba $(F)=R e \log \mathbb{V}$, where \mathbb{V} is the singular variety of F. Then the components B of $\mathbb{R}^{2} \backslash R e \log \mathbb{V}$ are the portions of \mathbb{R}^{2} in which F has a Laurent series representation, and F will have a minimum on ∂B.

Lemma 4. Let $h_{*}: \operatorname{Re} \log \mathbb{V} \rightarrow \mathbb{R}$ be as above. Then h_{*} takes its extremal values on $\partial R e \log \mathbb{V}$.
Observation 1. We observe that

$$
a_{r s} \underset{\substack{r+s \rightarrow \infty \\(r, s) \| \Delta *}}{\sim} f_{*}(r, s)
$$

if and only if $x_{0}^{r} y_{0}^{s}\left[a_{r s}-f_{*}(r, s)\right]=o(1)$ for $r+s \rightarrow \infty$ and $r / s=r_{*} / s_{*}$.
Theorem 5 (Restatement of Theorem 1). Let $F=G / H \in \mathbb{C}(x, y)$ and $\Delta_{*}=\left(r_{*}, s_{*}\right) \in \mathbb{R}_{+}^{2}$. Assume that $h_{*}: \mathbb{V} \rightarrow \mathbb{R}$ has a unique critical point $\left(x_{0}, y_{0}\right)$ that is smooth. Then there is a disc \mathbb{D}_{1} (resp \mathbb{D}_{2}) of \mathbb{C}, centred at $x_{0}\left(\right.$ resp $\left.y_{0}\right)$ such that

$$
a_{r s} \sim f_{*}(r, s)=\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{N} \times \mathbb{D}_{2}} \frac{F(x, y)}{x^{r+1} y^{s+1}} d x d y
$$

Proof. Since $\left(x_{0}, y_{0}\right)$ is a smooth point, at least one of $\left.\partial_{x} H\right|_{\left(x_{0}, y_{0}\right)}$ and $\left.\partial_{y} H\right|_{\left(x_{0}, y_{0}\right)}$ is non-zero. We pick the y coordinate.

From the Cauchy formula, we know (substituting ω for the integrand)

$$
a_{r s}=\frac{1}{(2 \pi i)^{2}} \int_{T} \omega
$$

where T is a torus passing through x_{0}. From our previous results, we know that we have the discs \mathbb{D}_{1} and \mathbb{D}_{2} centred at x_{0} and y_{0} respectively. Let δ_{2} be the radius of \mathbb{D}_{2}.

In Figure 3, we can see \mathbb{D}_{1} and \mathbb{D}_{2} marked in red. In the x-plane, the torus T is the black circle. In the y-plane, $\mathcal{C}_{-}=\left\{y \in \mathbb{C}:|y|=\left|y_{0}\right|-\delta_{2}\right\}$ and $\mathcal{C}_{+}=\left\{y \in \mathbb{C}:|y|=\left|y_{0}\right|+\delta_{2}\right\}$, both with positive orientation in the anti-clockwise direction. Using these two new contours, $\mathcal{C}_{ \pm}$, and the fact that $\left(x_{0}, y_{0}\right)$ is the unique critical point of h_{*}, we can rewrite the Cauchy integral as

$$
a_{r s}=\frac{1}{(2 i \pi)^{2}} \int_{|x|=\left|x_{0}\right|} x^{-r-1}\left[\int_{\mathcal{C}_{-}}-\int_{\mathcal{C}_{+}}\right] \frac{F(x, y)}{y^{s+1}} d y d x
$$

where we abuse notation between the square brackets, meaning the difference of the integrals over \mathcal{C}_{+} and \mathcal{C}_{-}. Applying Observation 1, we want to show that

$$
x_{0}^{r} y_{0}^{s}\left[a_{r s}-\frac{1}{(2 i \pi)^{2}} \int_{|x|=\left|x_{0}\right|} x^{-r-1}\left[\int_{\mathcal{C}_{-}}-\int_{\mathcal{C}_{+}}\right] \frac{F(x, y)}{y^{s+1}} d y d x\right]=o(1)
$$

The key observation is that in

$$
\frac{1}{(2 i \pi)^{2}} \int_{|x|=\left|x_{0}\right|} x^{-r-1} \int_{\mathcal{C}_{-}} \frac{F(x, y)}{y^{s+1}} d y d x
$$

Figure 3: A pictorial representation of the integration contours in the proof of Theorem 5.
the inner integral is exponentially small away from x_{0}. This is due to the fact that the radius of convergence for $x \neq x_{0}$ is greater than $\left|y_{0}\right|$, since $\left(x_{0}, y_{0}\right)$ is the unique minimal point of the singular variety. This gives

$$
\left|\int_{\mathcal{C}_{-}} \frac{F(x, y)}{y^{s+1}} d y\right| \leq \frac{C(x)}{\left(\left|y_{0}\right|+\epsilon\right)^{s}}
$$

for some $\epsilon>0$ and x away from x_{0}. Similarly, the integral over \mathcal{C}_{+}is bounded by the same quantity (up to a factor dependent on x) for x away from x_{0}.

By substituting this bound into the original integral, and taking a compact $K \subset\left\{|x|=\left|x_{0}\right|\right\}$ such that $x_{0} \notin K$, we find

$$
\left|\int_{K} \int_{\mathcal{C}_{ \pm}} \frac{F(x, y)}{x^{r+1} y^{s+1}} d x d y\right| \leq \frac{C_{K}}{\left|x_{0}\right|^{r}\left(\left|y_{0}\right|+\epsilon\right)^{s}}
$$

We may use a single ϵ, since by the continuity of the radius of convergence, one exists for all compact $K \subset\left\{|x|=\left|x_{0}\right|\right\}$.

This computation works since r, s both go to infinity. If one were to remain finite while the other diverged, this would no longer hold. Multiplying by $x_{0}^{r} y_{0}^{s}$, we obtain an expression which is exponentially small.

$$
\left|x_{0}^{r} y_{0}^{s} \int_{K} \int_{\mathcal{C}_{ \pm}} \frac{F(x, y)}{x^{r+1} y^{s+1}} d x d y\right| \leq C_{k}\left(\frac{\left|y_{0}\right|}{\left|y_{0}\right|+\epsilon}\right)^{s}
$$

Thus, the contribution to the iterated integral from the compact subset K of T in the x-plane is negligible, and the asymptotic estimate is given by the integral over the product $\mathcal{N} \times \partial \mathbb{D}_{2}$.

References

[1] R. Pemantle and M. C. Wilson. Analytic Combinatorics in Several Variables (draft). Cambridge University Press, 2012.

