Strict minimal points via surgery

Talk: Nicolas Marie Notes: Sam Johnson

March 18, 2013

We follow [1, Section 9.2], with some restrictions:

- we work in \mathbb{C}^2 (since if we can generalise to d = 2, we can generalise to any finite dimension);
- we assume F = G/H is rational, ie $F \in \mathbb{C}(x, y)$.

Then the Cauchy integral formula becomes

$$A_{rs} = \frac{1}{(2\pi i)^2} \int_T \frac{F(x,y)}{x^{r+1}y^{s+1}} dx dy$$

where $T = \{(x, y) \in \mathbb{C}^2 : |x| = \epsilon_1, |y| = \epsilon_2\}$ for ϵ_1, ϵ_2 sufficiently small.

Theorem 1. Let $F = G/H \in \mathbb{C}(x, y)$ and fix $\Delta_* = (r_*, s_*) \in \mathbb{R}^2_+$. Assume that $h_* : \mathbb{V} \to RR$, the height function on the singular variety of F, has a unique minimum (x_0, y_0) which is a smooth point. Then there is \mathbb{D}_1 (resp \mathbb{D}_2) a disc of \mathbb{C} centred at x_0 (resp y_0) such that

$$a_{rs} \sim f_*(r,s) = \frac{1}{(2\pi i)^2} \int_{\mathcal{N} \times \mathbb{D}_2} \frac{F(x,y)}{x^{r+1} y^{s+1}} dx dy,$$

where $\mathcal{N} = \mathbb{D}_1 \int \{x \in \mathbb{C} \mid |x| = |x_0|\}$. Moreover, there is a holomorphic function $\phi : \mathbb{D}_1 \to \mathbb{D}_2$ such that

$$f_*(r,s) = \frac{1}{2\pi i} \int_{\mathcal{N}} \frac{1}{x^{r+1} \phi(x)^s} \operatorname{Res}\left\{\frac{F(x,y)}{y}, \ y = \phi(x)\right\} dx.$$

Definition 1. Let $H \in \mathbb{C}[x, y]$ and $\mathbb{V} = \{(x, y) \in \mathbb{C}^2 \mid H(x, y) = 0\}$. A point $(x_0, y_0) \in \mathbb{V}$ is smooth if $\nabla H|_{(x_0, y_0)} \neq 0$.

Example 2. There are two examples.

1. Let H(x, y) = 1 - x - y. Then $\partial_x H = -1$ and $\partial_y H = -1$, so all points of H are smooth. From another point of view, H is flat everywhere (which we can see part of by looking at the section of H(x, y) in \mathbb{R} , the red line in Figure ??).

Figure 1: The red line is the real portion of the variety of H(x, y) = 1 - x - y, which is globally flat

2. Let $H(x, y) = (1 + x)x^2 + y^2$. The real variety of H is shown in Figure ??. The non-smooth point is (0,0), which is where the curve intersects itself. We could see this in two ways: 1) (0,0) is a double point, so $\partial_x(H)|_{(0,0)} = \partial_y(H)|_{(0,0)} = 0$; 2) $\partial_y(H) = 2y$, which is only zero if y = 0, and (0,0) is the only point of $\mathbb{V}(H)$ satisfying this.

Figure 2: The algebraic curve $H(x, y) = (1 + x)x^2 + y^2$

Theorem 3. Let $\mathbb{V} = \{(x, y) \in \mathbb{C}^2 \mid H(x, y) = 0\}$ be an algebraic curve and $(x_0, y_0) \in \mathbb{V}$ be a smooth point. Then there is a \mathbb{D}_1 (resp \mathbb{D}_2), a disc of \mathbb{C} centred at x_0 (resp y_0) and a holomorphic function $\phi : \mathbb{D}_1 \to \mathbb{D}_2$ such that

$$\mathbb{V} \cap (\mathbb{D}_1 \times \mathbb{D}_2) = \{ (x, \phi(x) \mid x \in \mathbb{D}_1 \}.$$

Proof. First, (x_0, y_0) is smooth, so at least one of $\partial_x H|_{(x_0, y_0)}$ and $\partial_y H|_{(x_0, y_0)}$ is non-zero. Without loss of generality, we may assume that $\partial_h H|_{(x_0, y_0)} \neq 0$.

Now, assume that there exists a function $f: \mathcal{D} \to \mathbb{C}$ with $\forall z \in \partial \mathcal{D}, f(z) \neq 0$. Then the claim is that

of zeroes of f in
$$\mathcal{D} = \frac{1}{2\pi i} \int_{\partial \mathcal{D}} \frac{\partial_z f(z)}{f(z)} dz$$
.

Indeed, if f has k roots in \mathcal{D} , then

$$f(z) = (z - z_1)^{\alpha_1} (z - z_2)^{\alpha_2} \dots (z - z_k)^{\alpha_k} \tilde{f}(z),$$

where \tilde{f} is non-zero on \mathcal{D} . Taking the first derivative, we find

$$d_z f = \sum_{i=1}^k \left[\alpha_i (z-z_1)^{\alpha_1} \dots (z-z_i)^{\alpha_i-1} \dots (z-z_k)^{\alpha_k} \tilde{f}(z) + (z-z_1)^{\alpha_1} \dots (z-z_k)^{\alpha_k} dz \tilde{f}(z) \right].$$

Thus,

$$\frac{d_z f}{f} = \sum_{i=1}^k \left[\frac{\alpha_i}{z - z_i} + \frac{d_z \tilde{f}(z)}{\tilde{f}(z)} \right].$$

Taking the integral of this, we take the residue of each summand at z_i . Since \tilde{f} is non-zero on \mathcal{D} , the second part of each summand is integrated to zero, and we get

$$\frac{1}{2\pi i} \int_{\partial \mathcal{D}} \frac{\partial_z f(z)}{f(z)} dz = \sum_{i=1}^k \alpha_i + 0,$$

which is the number of zeroes, with multiplicity.

From this, if f has a unique zero in \mathcal{D} , z_0 say, then the modified integral will allow us to find it:

$$\frac{1}{2\pi i} \int_{\partial \mathcal{D}} \frac{z \partial_z f(z)}{f(z)} dz = z_0.$$

Now, fix $x = x_0$ and $H(x_0, y) = H_{x_0}(y)$. We then have $H_{x_0}(y_0) = 0$ and $\partial_y H|_{(x_0, y_0)}$. Thus H_{x_0} is not flat at y_0 , so there is a neighbourhood of y_0 in which $H_{x_0} \neq 0$. Take this neighbourhood to be \mathbb{D}_2 . By our previous claim, we know that

$$\frac{1}{2\pi i} \int_{\partial \mathbb{D}_2} \frac{\partial_y H_{x_0}(y)}{H_{x_0}(y)} dy = 1 \Rightarrow \frac{1}{2\pi i} \int_{\partial \mathbb{D}_2} \frac{y \partial_y H_{x_0}(y)}{H_{x_0}(y)} dy = y_0.$$
(1)

Further, $H \in CC[x, y]$ tells us that $H_x(y)$ depends continuously on x.

Now, the function $H_{x_0}(y)$ is non-zero for all $y \in \partial \mathbb{D}_2$. By continuity, there must be some neighbourhood of x_0 , call it \mathbb{D}_1 , centred at x_0 such that $\forall x \in \mathbb{D}_1$, $H_x(y) \neq 0 \ \forall y \in \mathbb{D}_2$.

So we can replace x_0 in Statement 1 by any $x \in \mathbb{D}_1$, giving

$$\phi(x) = \int_{\partial \mathbb{D}_2} \frac{y d_y H_x(y)}{H_x(y)} dy = y \in \mathbb{D}_2.$$

Fix $\Delta_* = (r_*, s_*) \in \mathbb{R}^2_+$. Then there is an associated height function on the singular variety of F, or on its amoeba

$$\begin{split} h_* : \mathbb{V} \to \mathbb{R}, \qquad (x, y) \mapsto -\langle \Delta_*, (\log |x|, \log |y|) \rangle &= -r_* \log |x| - s_* \log |y, \\ h_* : Re \log \mathbb{V} \to \mathbb{R}, \qquad (x, y) \mapsto -r_* \log |x| - s_* \log |y. \end{split}$$

Recall that for a function F, amoeba $(F) = Re \log \mathbb{V}$, where \mathbb{V} is the singular variety of F. Then the components B of $\mathbb{R}^2 \setminus Re \log \mathbb{V}$ are the portions of \mathbb{R}^2 in which F has a Laurent series representation, and F will have a minimum on ∂B .

Lemma 4. Let $h_* : Re \log \mathbb{V} \to \mathbb{R}$ be as above. Then h_* takes its extremal values on $\partial Re \log \mathbb{V}$.

Observation 1. We observe that

$$a_{rs} \underset{r+s \to \infty \atop (r,s) \mid \mid \Delta_*}{\sim} f_*(r,s)$$

if and only if $x_0^r y_0^s [a_{rs} - f_*(r, s)] = o(1)$ for $r + s \to \infty$ and $r/s = r_*/s_*$.

Theorem 5 (Restatement of Theorem 1). Let $F = G/H \in \mathbb{C}(x, y)$ and $\Delta_* = (r_*, s_*) \in \mathbb{R}^2_+$. Assume that $h_* : \mathbb{V} \to \mathbb{R}$ has a unique critical point (x_0, y_0) that is smooth. Then there is a disc \mathbb{D}_1 (resp \mathbb{D}_2) of \mathbb{C} , centred at x_0 (resp y_0) such that

$$a_{rs} \sim f_*(r,s) = \frac{1}{(2\pi i)^2} \int_{\mathcal{N} \times \mathbb{D}_2} \frac{F(x,y)}{x^{r+1}y^{s+1}} dx dy.$$

Proof. Since (x_0, y_0) is a smooth point, at least one of $\partial_x H|_{(x_0, y_0)}$ and $\partial_y H|_{(x_0, y_0)}$ is non-zero. We pick the y coordinate.

From the Cauchy formula, we know (substituting ω for the integrand)

$$a_{rs} = \frac{1}{(2\pi i)^2} \int_T \omega,$$

where T is a torus passing through x_0 . From our previous results, we know that we have the discs \mathbb{D}_1 and \mathbb{D}_2 centred at x_0 and y_0 respectively. Let δ_2 be the radius of \mathbb{D}_2 .

In Figure 3, we can see \mathbb{D}_1 and \mathbb{D}_2 marked in red. In the *x*-plane, the torus *T* is the black circle. In the *y*-plane, $\mathcal{C}_- = \{y \in \mathbb{C} : |y| = |y_0| - \delta_2\}$ and $\mathcal{C}_+ = \{y \in \mathbb{C} : |y| = |y_0| + \delta_2\}$, both with positive orientation in the anti-clockwise direction. Using these two new contours, \mathcal{C}_{\pm} , and the fact that (x_0, y_0) is the unique critical point of h_* , we can rewrite the Cauchy integral as

$$a_{rs} = \frac{1}{(2i\pi)^2} \int_{|x|=|x_0|} x^{-r-1} \left[\int_{\mathcal{C}_-} - \int_{\mathcal{C}_+} \right] \frac{F(x,y)}{y^{s+1}} dy dx,$$

where we abuse notation between the square brackets, meaning the difference of the integrals over C_+ and C_- . Applying Observation 1, we want to show that

$$x_0^r y_0^s \left[a_{rs} - \frac{1}{(2i\pi)^2} \int_{|x|=|x_0|} x^{-r-1} \left[\int_{\mathcal{C}_-} - \int_{\mathcal{C}_+} \right] \frac{F(x,y)}{y^{s+1}} dy dx \right] = o(1).$$

The key observation is that in

$$\frac{1}{(2i\pi)^2} \int_{|x|=|x_0|} x^{-r-1} \int_{\mathcal{C}_-} \frac{F(x,y)}{y^{s+1}} dy dx$$

Figure 3: A pictorial representation of the integration contours in the proof of Theorem 5.

the inner integral is exponentially small away from x_0 . This is due to the fact that the radius of convergence for $x \neq x_0$ is greater than $|y_0|$, since (x_0, y_0) is the unique minimal point of the singular variety. This gives

$$\left| \int_{\mathcal{C}_{-}} \frac{F(x,y)}{y^{s+1}} dy \right| \le \frac{C(x)}{(|y_0|+\epsilon)^s},$$

for some $\epsilon > 0$ and x away from x_0 . Similarly, the integral over C_+ is bounded by the same quantity (up to a factor dependent on x) for x away from x_0 .

By substituting this bound into the original integral, and taking a compact $K \subset \{|x| = |x_0|\}$ such that $x_0 \notin K$, we find

$$\left| \int_{K} \int_{\mathcal{C}_{\pm}} \frac{F(x,y)}{x^{r+1}y^{s+1}} dx dy \right| \leq \frac{C_{K}}{|x_{0}|^{r} (|y_{0}|+\epsilon)^{s}}$$

We may use a single ϵ , since by the continuity of the radius of convergence, one exists for all compact $K \subset \{|x| = |x_0|\}$.

This computation works since r, s both go to infinity. If one were to remain finite while the other diverged, this would no longer hold. Multiplying by $x_0^r y_0^s$, we obtain an expression which is exponentially small.

$$\left| x_0^r y_0^s \int_K \int_{\mathcal{C}_{\pm}} \frac{F(x,y)}{x^{r+1} y^{s+1}} dx dy \right| \leq C_k \left(\frac{|y_0|}{|y_0| + \epsilon} \right)^s.$$

Thus, the contribution to the iterated integral from the compact subset K of T in the x-plane is negligible, and the asymptotic estimate is given by the integral over the product $\mathcal{N} \times \partial \mathbb{D}_2$.

References

 R. Pemantle and M. C. Wilson. Analytic Combinatorics in Several Variables (draft). Cambridge University Press, 2012.