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Summary of Ch. 8: Overview of analytic methods for multivariate generating functions

Big Goal: how do we make smart choices of contours of integration so that we can asymptotically evaluate
the Cauchy integral

ar =

(
1

2πi

)d ∫
T

zr−1F (z)dz ?
Generally... push the chain of integration down to a critical point, and then interpret the integral locally
as an instance of a type that is classically understood (e.g. saddle point methods, generating functions)

Steps at end of Section 1.3:

(1) Use the multidimensional Cauchy integral to express ar as an integral over a d-dimensional torus T
in Cd.

(2) Observe that T may be replaced by any cycle homologous to [T ] in Hd(M) where M is the domain
of holomorphy of the integrand.

(3) Deform the cycle to lower the modulus of the integrand as much as possible; use Morse theoretic
methods to characterize the minimax cycle in terms of critical points.

(4) Use algebraic methods to find the critical points; these are points of V that depends on the direction
r̂ of the asymptotics, and are saddle points for the magnitude of the integrand.

(5) Use topological methods to locate one of more contributing critical points, zj and replace the integral
over T by an integral over quasi-local cycles C(zj) near each zj .

(6) Evaluate the integral over each C(zj) by a combination of residue and saddle point techniques.

• Chapter 8: An Overview!
• Chapter 9: Smooth point asymptotics
• Chapter 10: Multiple point asymptotics
• Chapter 11: Cone point asymptotics

1. Exponential rate

Can we get a first nontrivial estimation of ar?

• exponential level: log |ar| ∼ g(r) as r→∞.
• Possible violation: if an oscillatory term exists and the modulus (size) of the oscillatory factor in ar

is too small.

Better: when uniform as r̂ varies over some neighbourhood of r̂∗.

• Thus: smooth the exponential rate by replacing the rate functiong by the lim sup neighbourhood
rate function β.

Definition 1.1.

β(r̂∗) = inf
N

lim
r→∞

sup
(
|r|−1 log |ar|

)
where N varies over a system of open neighbourhoods of r̂∗ whose intersection is the singleton {r̂∗}.

The above definition had a typo in the lecture notes that included a sum. This has been fixed here which
makes the inequality β(r) ≤ β∗(r), seen later, simple to prove.

Example 1.2. ars =
(
r+s−1
s

)
−
(
r+s−1
r

)
corresponds to the bivariate generating function∑
i,j

ai,jx
iyj =

(x− y)

(1− x− y)
.

Naively: arr =
(
r+r−1
r

)
−
(
r+r−1
r

)
= 0 and so we’d get log |0| = −∞.

New definition: log 2
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An important upper bound for β: for any x ∈ B, convergence of
∑

r arz
r implies the magnitude of the

terms goes to zero.
This is because: z = exp(x+iy) and ar = o(exp(−r·x)) as r→∞ so the set of r such that ar ≥ ε exp(−r·x)

is finite for any ε > 0.

We interested in the function F (x)) = G(x)
H(x) , where G and H are holomorphic.

An amoeba is a genus of Protozoa consisting of shapeless unicellular organisms.

In complex analysis, an amoeba is a set associated with a polynomial in one or more complex variables.
Properties:

• Any amoeba is a closed set.
• Any connected component of the complement R\Ap is convex.
• The area of an amoeba of a not identically zero polynomial in two complex variables is finite.
• A two-dimensional amoeba has a number of ‘tentacles’ which are infinitely long and exponentially

narrowing towards infinity.

We just need to know that the amoeba of a function f is defined by

amoeba(f) := {Re log z : f(z) = 0}
Example 1.3. amoeba(2− x− y)

and that the amoeba Legendre transform is defined by

β∗(r) := inf{−r · x : x ∈ B},
where B is a connected component of the amoeba H.

This function depends on the polynomial H and component B of amoeba(H)c, but we suppress this
notation. Taking the infimum over x ∈ B gives:

β(r) ≤ β∗(r).

This β∗ is semialgebraic (a semialgebraic set is a subset S of Rn for some real closed field R, e.g. R,
defined by a finite sequence of polynomial equations of the form P (x1, . . . , xn) = 0, and inequalities of the
form Q(x1, . . . , xn) > 0 or any finite union of such sets) which apparently means that it is computable.
This leads us to want to know when β = β∗ so that we can compute the exponential rate.
Related to: can a dominating point be found?

Consider B a component of the boundary of an amoeba, which means it is convex. Let r ∈ (Rd)∗. First
we try to find out if the infimum in

β∗(r) := inf{−r · x : x ∈ B}
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is achieved on B.
Easiest case: infimum is −∞.

Proposition 1.4. If H is a Laurent polynomial (has both positive and negative powers) and the infimum of
−r · x on a component B of amoeba(H)c is −∞, then ar = 0.

Proof. • Notation: B(c) is set of points whose ε-neighbourhood is contained in B¿
• If −r · x is unbounded from below: choose xn ∈ B(c) with −r · xn ≤ −n.
• Otherwise: B(c) and −r ·x are semialgebraic so can choose {xn} so that there is a polynomial lower

bound |H(xn)| ≥ n−α for some α.
• So for some polynomial P (n) and the torus T(xn) := exp(x + iRd),

|z−1F (z)| ≤ P (n)

on that torus.
• Using Cauchy’s integral formula on T(xn) and using that |z−r| ≤ en on T(xn) gives:

|ar| =

∣∣∣∣∣
(

1

2πi

)d ∫
T(xn)

zr−1F (z)dz

∣∣∣∣∣
≤ 1

(2π)d
|T(xn)|e−nP (n).

• The (2π)−d cancels the volume of the torus
• Notice: e−nP (n)→ 0.
• Done.

�

What if we don’t have such a nice quotient of Laurent polynomials and instead have a more general
meromorphic function G/H with H analytic and power series converging on a domain B? Then, when
−r · x is unbounded from below on B, the ar coefficients decay super-exponentially. Pemantle and Wilson
suggest trying a saddle point method directly (see Section 3.2?)

Notation: Ξ := the set r when β∗(r) > −∞. A cone.
If β∗(r) := inf{−r · x : x ∈ B} is finite, it will be achieved unless B has an asymptote in the direction

normal to r. Assuming this is not the case, the infimum is achieved uniquely unless B fails to be strictly
convex and its boundary contains a line segment. Most common case: the non-flat case

Definition 1.5. The direction r̂∗ ∈ Ξ is non-flat if the infimum β∗(r) := inf{−r · x : x ∈ B} is attained at
a unique point xmin(r̂∗), of B, which we call the minimizing point for r̂∗.

Note that xmin must lie on the boundary of B because extrema of linear functions are never in the interior
of a set.
Deducing the domain of convergence for a nonflat direction r̂∗ ∈ Ξ with minimizing point xmin:

• The Cauchy integral chain of integration may be taken as the torus T(x) for any x ∈ B.
• Sending x→ xmin gives another proof that β(r) ≤ β∗(r).
• Could observe: terms of a convergent power series must go to zero.
• More illuminating: using the multivariate Cauchy formula: if we deform the chain of integration

beyond T(xmin) to a chain on which −r ·x is bounded above by some c < β∗(r), we can deduce that
β ≤ c < β∗.

• If not? The strong evidence that β(r) = β∗(r).
• Be careful: it is not true that β(r) = β∗(r) iff the chain T(x) for x ∈ B cannot be deformed into a

chain supported by {x : −r · x < β∗(r)}.
They conject that there is some modified version of the above that is correct. However, looking into these

deformations means you need to leave behind nice ‘easy-to-visualize’ chains (like tori) and hang out in a
more topological (as opposed to geometrical) realm. The rest of the chapter does this....
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2. Morse theory

The domain of holomorphy of a rational function F is the complement of the zero set of the denominator.

Example 2.1. F (z) = 1
1−x−y has the zero set in the denominator x+ y = 1, so the domain of holomorphy

is C2 without that.

It is also an open subset of Cd, namely the manifold

M := Cd\{z : (z1 · · · zd) : H(z) = 0}
which is obtained by removing the coordinate hyperplanes and the singular variety V.

Stokes’ Theorem: Let ω be a p− 1-form (p ≥ 1) on a manifold M of dimension at least p and let C be
a p-chain on M. Then ∫

∂C
ω =

∫
C
dω.

So. . . Stokes’ theorem tells us that if ω is a d-form, i.e. exactly what we have and holomorphic on a domain
D in Cd then

∫
C
ω depends only on the homology class of C in Hd(D). There is a theorem in the Appendix

that proves this. Here, our ω is the d-form ω := z−r−1F (z)dz and our domain is the manifold M so we are
able to get that

∫
C

z−r−1F (z)dz depends only on the homology class of C in Hd(M).
So what have we done? We have gotten to step (2) in those steps outlined in Section 1.3. Today we are

going to get to step (4). Let’s move on.
We can fix r̂∗, the arbitrary direction, and define the height function

h(x) := hr̂∗(x) := −r̂∗ ·Re log x.

We want to use this height function as |r|h instead of the log magnitude of our original integrand (ω :=
z−r−1F (z)) because it gets the part that goes to infinity with r and leaves only z−1F (z) which is bounded
on compact subsets of M (our manifold).

So instead of step (3) (which says: Deform the cycle to lower the modulus of the integrand as much as
possible; use Morse theoretic methods to characterize the minimax cycle in terms of critical points.), we can
instead ask:

• What chain C of integration, homologous in Hd(M) to T(x) for x ∈ B achieves the least value of
maxx∈C h(x)?

• Can we make this maximum less than β∗?

The topology of our manifold M can be related (by duality?) to the topology of our variety V. This is
good, because V is a more classically understood object in Morse theory. Visualization hints:

• Think of a 2D example where the singular variety V is drawn where ‘up’ is height.
• This can’t be done for C2, but the complex algebraic curve V is a surface of two real dimensions

which sit in 3D space. V intersects the coordinate axes in a finite number of points, where the height
function h will be infinite, and there are finitely many points at infinity where the height tends to
−∞..
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Recall: Homotopic vs. Homologous

• In topology, two continuous functions from one topological space to another are called homotopic
if one can be continuously deformed into the other.

• Homology is a certain general procedure to associate a sequence of modules with a topological space.
Homology groups are generally easier to compute than homotopy groups. Original motivation for
defining homology groups is the observation that shapes are distinguished by their holes. Sometimes
homology can’t see the holes, in which case we need homotopy.

• Here: we only need that chains are homologous, and Morse theory only guarantees that chains are
homologous, so sometimes work with homology instead of homotopy. But usually we get homology
through homotopy, so don’t worry about it too much.

Now with that set up, let us consider some background to Morse theory in general...
Smooth Morse Theory

This is Marston Morse (1892-1977):

an American mathematician known for introducing the technique of differential topology no known as
Morse theory. Morse theory enables one to analyse the topology of a manifold by studying differentiable
functions on that manifold. Morse said that a typical differentiable function on a manifold will reflect the
topology quite directly. A manifold of dimension n is a topological space that near each point resembles n-
dimensional Euclidean space. More precisely, each point of an n-dimensional manifold has a neighbourhood
that is homeomorphic to the Euclidean space of dimension n. Lines and circles are manifolds. The figure
eight is not. A 2-D manifold is called a surface. Examples are the sphere, plane and torus.

It was more fully developed by John Milnor, an American mathematician born in 1931 who is one of only
three mathematicians to have won each of the Fields medal, the Abel prize and the Wolf prize.

The book says that basic Morse theory concerns a compact manifold V (A compact manifold is a manifold
that is compact as a topological space (every open cover has a finite subcover)) endowed with a smooth height
function h : V → R.

Denote: Vc := {x ∈ V : h(x) ≤ c}, the subset of points at height at most c.
Traditional purpose of Morse theory is to tell how this subset Vc changes as c increases from its minimum

to maximum value.
Fundamental Morse Lemma: the topology does not change between critical values. Lemma B.1.2

Appendix B.
Second main result in Morse theory: a description of how the topology changes at critical values.

Theorem B.1.3 Appendix B.
Important: the implications for the minimax height of a cycle representing a given homology class.

Consider picture again.

Suppose V has k critical points with distinct critical values c1 > . . . > ck. The Morse Lemma (above) is
proved by showing that for any interval [a, b] containing no critical values of h, the set Vb retracts homotopi-
cally into Va. Any cycle C supported by Vb is carried by this retraction into Va.
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h∗(C) := (A critical value of h) the infimum of c given a d-cycle C such that C is homologous in H∗d (V) to
a cycle supported on V; → h∗(C) is always a critical value cj of h.

Consider C a cycle in V. Then:

(1) h∗(C) = c1 or
(2) C is homologous to a cycle supported on Vc1−ε.

If (2) then:

• the homology class [C] vanishes when projected to the relative homology group Hd(V,Vc1−ε) for
some ε > 0.

• If this homology class is nonzero this is a ‘topological obstruction’ at height c1.
• Then inductively: h∗(C) = cj where j is the least index where a topological obstruction occurs.
• This obstruction is local to the critical point p which is at height cj :

– All trajectories of Vcj−ε reach cj − ε except those in a neighbourhood of p.

Sum up lemma:

Lemma 2.2. (quasi-local cycle) Let V be a compact manifold of homology dimension d and let h : V → R
be smooth. Suppose that h has finitely many critical points with distinct critical values c1 > . . . > ck. Let C
be any cycle in Hd(V). Then

(1) The minimax height h∗(C) of the class [C] is equal to cj for some j.
(2) Let p be the unique critical point of h at height h∗. Then C is homologous to a cycle C∗ supported

on the union of Vcj−ε and an arbitrarily small neighbourhood of p. The value of j and the homology
class of C∗ in the space Xp,loc is uniquely determined by C.

(3) j bay be characterized as the least index i for which the image of C in Hd(V,Vcj ) vanishes.

Example 2.3. Consider the following example of a homology class travelling down a surface with two
saddles:

Here C is the upper two blue cycles made up of two components and their are two critical values, c1 and
c2. If c > c1, we can retract V to Vc by carrying C to a cycle that is homotopic to C, like the middle two
circles drawn in magenta. Since the two components are in opposite directions near the saddle p1 at height
c1 there is no topological obstruction when we continue below p1, and those components can merge and form
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the pink cycle (homology vs. homotopy). When p2 is hit, this is a topological obstruction and the maximum
height of C cannot be pushed below c2.

Stratified Morse Theory
1988: (Goresky and MacPherson) basic Morse theory extended to

(1) stratified spaces
(2) noncompact spaces (eg. complements of manifolds)

Recall:

Definition 2.4. (Whitney stratification) Let Z be a closed subset of a smooth manifold M. A Whitney
stratification of Z is an I-decomposition such that

(1) Each Sα is a manifold in Rn.
(2) If α < β, if the sequences {xi ∈ Sβ and {yi ∈ Sα both converge to y ∈ Sα if the lines li = xiyi

converge fo a line l and the tangent planes Txi
(Sβ) converge to a plane T of some dimension, then

both l and Ty(Sα) are contained in T .

Also:

• Every algebraic variety is a Whitney stratified space.
• V is the disjoint union of manifolds of various dimensions.
• h : V → R is ‘smooth’ if it is smooth when restricted to each stratum.
• p ∈ V is critical if it is a critical point of h|S where S is the stratum of V with p.
• Let h be a proper map (inverse image of any compact set is compact).

Lemma 2.5. (Fundamental Lemma for stratified spaces Let V be a stratified space and let h : V → R be a
smooth, proper function with finitely many distinct critical values. If h has no critical values in [a, b], then
Xa is a strong deformation retract of Xb. In particular, the homotopy types of Xt are all naturally identified
for a ≤ t ≤ b and any cycle in Vb is homotopic to a cycle in Va.

Idea (again): Any cycle may be pushed down until it reaches some topological obstruction at a critical
point, then it becomes a quasi-local cycle having height at most h∗(C) − ε except in some neighbourhood of
that critical point (C is the cycle).
Non-proper Morse theory

We actually want to deform chains of integration in the complement of an algebraic variety V in Cd. The
height function h :M→ R is never proper.

Expect from topological duality? the critical values of h on V are the only values of c at which the
topology of Mc+ε and Mc−ε can differ. Indeed!

Lemma 2.6. (Fundamental Lemma for complements of stratified spaces) Let M denote the complement in
(Cd)∗ of a stratified space V. If the smooth proper function h : V → R has no critical values in [a, b] in V,
then Xa is a strong deformation retract of Xb. Any cycle in Mb is homotopic to a cycle in Ma and three
original conclusions hold.

How do we use this?

• Ideally for step (3) of the original 6 steps in section 1.3.
• But since h is not usually proper on V since h can sometimes h approach a finite limit as x→∞ on
V (particularly when d ≥ 3.).

• However, this holds (mostly, strata at infinity might have new critical points) if there is a compact-
ification of V such that h extends continuously as a function to the extended reals [−∞,∞].

• Such a compactification is conjectured by Pemantle (2010).
• In the meantime: proceed but verify deformations for each new class of problems.

Non-Morse Morse Theory
Q: What does it actually mean for a funciton to be Morse?
A: The critical points are nondegenerate and the critical values are distinct.
When we assume that height function h has isolated critical points, the Morse Lemma remains true in

all forms. But if this is not the case, the pair (Xc, Xc−ε) will in general be homotopy equivalent to a direct
sum of local pairs, Xp,loc and defined as follows:
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Lemma 2.7. (quasi-local cycles when critical values are not distinct) Let M = (Cd)∗\V be the complement
of a stratified space and let h : (Cd)∗ → R be smooth and proper. Let pi,1, . . . ,pi,n denote the set of critical
points with critical values ci. Then,

(1) The minimax height h∗(C) of the class [C] is equal to cj for some J .
(2) The cycle C is homologous to a cycle C∗ supported on the union of Mcj−ε and an arbitrary small

neighbourhood of {pj,1, . . . ,pj,nj}.
(3) j may be characterized as the least index i for which the image of C in Hd(M,Mci) vanishes.
(4) The homology group Hd(Mcj+ε,Mcj−ε) is naturally the direct sum, induced by inclusion, of the

homology group Hd(X
pj,i,loc) for 1 ≤ i ≤ nj, (Xp,loc is the pair (Xcj−ε

⋃
N(p), Xck−ε) and N(p)

is an arbitrarily small neighbourhood of p).
(5) The cycle C∗ may be written as a sum

∑
contrib C∗(z) where contrib is the set of z = pi,j for which

the projection of C to Hd(Mz,loc) is nonzero.

What is the same? What is different?

• Same: Cauchy integral is unchanged if the chain of integration is varied over a homology class in
Hd(M).
• Different: Relative homology classes are a coarser partition of chains of integration and do not leave

integrals invariant.
• However: chains in same relative homology class in Hd(M,Mcj−ε) have integrals that only differ

by O(exp[(c− ε)|r|])
• Thus, these are exponentially smaller than exp[(cj+o(1))|r|] ... error term within a relative homology

class is negligible.

Conclude: The topological invariant C∗ =
∑
z∈contrib C∗(z) determines the asymptotics of ar up to an

exponentially smaller remainder.

3. Critical Points

Goal: analyze a Laurent series for F = G/H which is convergent on a component of B of the complement
of the amoeba of H.
Steps:

(1) Let T = T(X) (the torus exp(x + iRd)) for some x ∈ B.
(2) When r̂∗ is fixed, the height function h = hr̂∗ is constant on T with common value b := −r̂∗ · x.
(3) List the critical values of h that are at most b in descending order b > c1 > c2 . . ..
(4) (Bit hand wavy): the cycle C is homologous to the sum of one or more quasi-local cycles at critical

points at height h∗(C).
(5) We can compute these from H (the denominator)! (unless we are in the degenerate case..) Why?

• There is a computable Whitney stratification for V.
• The strata of V are smooth manifolds each of dimension k ≤ d− 1.
• Any stratum S of dimension k is a k-dimensional algebraic variety S possibly minus some

varieties of smaller dimensions.
• Any irreducible k-dimensional complex algebraic variety can be represented as the intersection

of d− k algebraic hypersurfaces which intersect ‘transversely.’ (set crossways?? )
• Thinking of S this way, all points at which the intersection is not transverse are in S\S, i.e. are

in lower dimensional strata.
• So... S can be represented as the intersection of d − k algebraic hypersurfaces Vf1 , . . . ,Vfd−k

which intersect transversely at every point of S.
• The polynomial fj can be computed and have nonvanishing gradient at every point

of S.
(6) How do we actually do this?

• Let M be the (d − k + 1) × d matrix whose rows are the the d − k gradients with r̂∗ (looking
for r̂∗ to be in the span of the d− k gradient vectors of f with respect to log x).
• At points of S: the submatrix of M made up of the first d− k rows has rank d− k.
• The span of the d − k gradients contain r̂∗ ↔ the k determinants Md−k+i, 1 ≤ i ≤ k where
Md−k−i has the first d− k columns of M together with the (d− k + i)th column.
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• This gives the d-critical point equations:

fi = 0, 1, . . . , d− k;

det(Md−k+i) = 0, i = 1, . . . , k.

The most common special case is when the critical points are smooth and we can be even more
explicit.
• the defining equation for S is f1 := H = 0.
• Being in the span of the gradient of f1 with respect to log x leads to d−1 equations for vanishing

2× 2 subdeterminants:
H = 0

r1x2
∂H

∂x2
= r2x1

∂H

∂x1
...

r1xd
∂H

∂xd
= r2x1

∂H

∂x1

Example 3.1. The generating function F = G/H = 1
1−x−y has binomial coefficients

(
r+s
r,s

)
. Here H =

1− x− y. We compute its gradient, and get 5H = (−1,−1). Great thing: this never vanishes and so V is
smooth. Then our equations become:

1− x− y = 0

−sx = −ry
and solving we get x = r

r+s and y = s
r+s . Thus our critical point is(

r

r + s
,

s

r + s

)
.

Example 3.2. Let Ar be the lattice paths from the origin to f in Z2 that only use steps that go N , E or
NE. Its generating function is called the Delannoy generating function and is

F (x, y) =
1

1− x− y − xy
.

Here, H = 1− x− y − xy and we can easily compute its gradient as (−1− y,−1− x).
We must also check that V is smooth. The strategy for this is to verify that −1 − y and −1 − x and H

never simultaneously vanish. This can be done by checking the Groebner basis for all three. You can do this
in Maple. Then the critical point equations are:

1− x− y − xy = 0

sx(1 + y) = ry(1 + x)

Solving this.... (with some Maple help) gives that

y =
−r ±

√
r2 + s2

s
x =

−s±
√
r2 + s2

r
Of course, there are then four possible pairings, but only two actually solve the equations above: the two
positive roots and the two negative roots. Thus the critical points are:(√

r2 + s2 − s
r

,

√
r2 + s2 − r

s

)
and

(
−
√
r2 + s2 − s

r
,
−
√
r2 + s2 − r

s

)
.
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