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1 Motivation

We shall consider a generating function, F (z) ∈ O(D), where D ∈ Cd. We know that an can be evaluated
by the Cauchy integral formula

an =
1

2πi

d ∫
Γ

1

zn
F (z)dz. (1)

Denote ω = 1
znF (z)dz and call it a differential form.

Now observe that Γ is a d-dimensional torus; in other words, Γ is the Cartesian product of d circles, S1.

Denote by ∂, the boundary operator and note that ∂S1 = 0, so ∂Γ = 0. Therefore Γ ∈ ker(∂) and is called
a cycle.

Denote by d : Ωk(D) → Ωk+1(D) the differential operator. We can see that the form ω is closed, that is
ω ∈ ker(d), via the computation of dω.

It can be shown via computation that deforming Γ into Γ + ∂M and translating ω into ω+ dω0 both do not
change the value of the integral (1). We simply need to expand the sum and apply Stokes’s theorem.

We shall investigate how to easily compute the integral (1) by deformations of Γ. In particular we would
like to use Morse theory to characterize H∗(D) = ker(∂)/im(∂).

intro to defs.
Definition 1.1. Let X,Y be topological spaces and

X
f−→−→
g
Y

be continuous maps. We say that f is homotopic to g, f ∼ g, if there is a continuous map F : X× [0, 1]→ Y
such that for all x ∈ X, F (x, 0) = f(x) and F (x, 1) = g(x).
Definition 1.2. Let x, Y be topological spaces. We say that X and Y are homotopy equivalent if there are

X
f−→−→
g
Y

continuous maps such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX .

Though homeomorphic topological spaces are homotopy equivalent, it is important to note that not all
homotopy equivalent topological spaces are homeomorphic.
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Example 1. Let X = D3, the continuous sphere in R3 and Y = {q}, for q ∈ R3.

These topological spaces are clearly not homeomorphic; however we shall see that they are homotopy equiv-
alent.

Define f : X → Y, p→ q and g : Y → X, q → 0.

p

g◦f

0

Figure 1: The map g ◦ f .

Then (f ◦ g)(q) = q, so f ◦ g = idy and (g ◦ f)(p) = 0. g ◦ f does not equal idX but they are homotopic via
the map

F : X × [0, 1] → X
(x, t) → tx.

Theorem 1.3 (Homotopy principle). Let X,Y be topological spaces. If X is homotopy equivalent to Y then
H∗(X) ∼= H∗(Y ).

2 Morse theory of closed surfaces

In this section X is an orientable surface in R3.
Definition 2.1. A Morse function in X is a smooth function h : X → R such that h has only nondegenerate
forms.
Definition 2.2. A point p ∈ X is a critical point of a Morse function H if dh|p = 0.
Definition 2.3. The Hessian of h at p is the matrix

H(h, p) =

(
∂2
xh|p ∂x∂yh|p

∂y∂xh|p ∂2
yh|p

)
where (x, y) are local coordinates of a neighbourhood of p.

A critical point is non-degenerate if detH(h, p) 6= 0.
Example 2. The projection onto the z-axis is not a Morse function for the surface in Figure 2 because its
critical points are degenerate. This is due to the geometry of the surface.

h
R

Figure 2: h = prz is not a Morse function for this surface.
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For the sphere (see Figure 3), the projection onto the z-axis is a Morse function because its critical points
are a maximum and a minimum. However the resultant function h′(p) = m for all p is not a Morse function
of the sphere because every point is a degenerate critical point. This is due to the definition of the function.

h

h′

R

Figure 3: h = prz is a Morse function for the sphere, but h′ which sends everything to 0 is not.

Theorem 2.4. Let x be a smooth closed surface and h : X → R be a smooth function with exactly 2 critical
points. Then X is homeomorphic to the sphere.

Proof. Start by examining the neighbourhoods of the 2 critical points and then glue them together.

In the text they prove the more general case of k critical points in Theorem B.17.

Define X [a,b] = {p ∈ X : a ≤ h(p) ≤ b}, Xa = {p ∈ X : a ≤ h(p)} and La(h) = {p ∈ X : h(p) = a}.
Lemma 2.5. If h : X → R is a Morse function without any critical points in [a, b] then X [a,b] ∼= La(h).
Lemma 2.6. If h : X → R is a Morse function on a closed surface it must have finitely many critical points.

These lemmas lead to the Morse Lemma.
Lemma 2.7 (Morse lemma). If h : X → R is a Morse function and h has no critical values in [a, b] then
Xa is homotopy equivalent to Xb.

Proof. Use the previous lemmas to show thatX[a−ε, a] andX[a−ε, b] are both homeomorphic to La−ε(h)× [0, 1]
for ε small enough.

Example 3. In this example we shall do a handlebody decomposition of the torus.

If we take our Morse function, h = prz then h has 4 critical points, p−, p1, p2 and p+ as seen in Figure 4.
Let m− = h(p−), m1 = h(p1), m2 = h(p2) and m+ = h(p+).
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R

Figure 4: Torus with the critical points of h marked.

Around the minimum the torus h(p) = x2 + y2 +m−. So Xm1+ε ∼= D2. See Figure 5.

p−

Figure 5: Near the minimum of the torus.

Around p1, h(p) = −u2 + v2 +m1. The shape is a saddle and is isomorphic to D1 × D1. See Figure 6.

p1

Figure 6: Near p1.

We can attach the saddle to the minimum’s sphere using a union via the gluing function g1. See Figure 7.
So Xm1+ε ∼= D2 ∪g1 (D1 × D1).

g1 g1

Figure 7: Gluing g1.

For p2 we glue using the function g2 giving Xm2+ε ∼=
(
D2 ∪g1 (D1 × D1)

)
∪g2 (D1 × D1). See Figure 8.
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g2 g2

Figure 8: Gluing g2.

Finally, we glue the maximum’s sphere with g1 to get X ∼=
((

D2 ∪g1 (D1 × D1)
)
∪g2 (D1 × D1)

)
∪g1 D2.

Definition 2.8. A cell complex is a topological space defined as follows:

X[0] = e-0
1 t e-0

2 t · · · t e-0
i

X[j] = (e-j
1 t e

-j
2 t · · · t e

-j
i ) ∪g X[j − 1] ∀j ≥ 1

The decomposition of the torus in Example 3 is a cell complex.
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