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We shall restrict ourself to two variables, since the extension is by induction it takes little to move to more
variables. We will also assume F = G

H ∈ C(x, y).

Last time we found when we choose a direction δ∗ = (r∗, s∗) then we have an associated height function
h∗ : Relog V→ R, V = V(h).
Theorem 0.1 (Theorem 9.2.1). If F ∈ C(x, y) with δ∗ = (r∗, s∗), h∗ the associated height function and h∗
has a strictly minimal smooth point, z∗, then

ar,s ∼ r+s→∞
(r,s)‖δ∗

1

2πi

∫
N
x-rφ(x)-sΨ(x)

dx

x
,

where

Ψ(x) = Res

{
F (x, y)

y
; y = φ(x)

}
.

Proof. See above Theorem 9.2.1 in Pemantle and Wilson.

The general idea of the proof is to calculate the residue of
(∫

C−
−
∫
C+

)
ω.

Example 1. Let H = 1− x− y and δ∗ = (r, s), (x∗, y∗) = ( r
r+s ,

s
r+s ).

Then φ(x) = 1− x which is an entire function.

Take N small around r
r+s on δ∗ = (r, r) then the approximation is good until r ≈ 75.

If you take N = T then
∫
N = ar,s.

Now we consider the case where z∗ = (x∗, y∗) is a smooth critical point for h∗ and V∩T (log |x∗|, log |y∗|) = E
is a finite set of smooth points of V.

We construct the following tori in Figure ??:

For each p ∈ E we get φp : Di,p → D2,p mapping x-coordinates of poles to y-coordinates of poles and a
neighbourhood Np = T (log |x∗|) ∩ D1,p. With these we get:
Corollary 0.2 (Corollary 9.2.3). Let F ∈ C(x, y) with δ∗ a fixed direction and h∗ is the associated height
function. If z∗ is a smooth critical point and E, Di,p, φp and Np are as above then

ar,s ∼ r+s→∞
(r,s)‖δ∗

1

2πi

∑
p∈E

∫
Np

x-rφp(x)-sΨp(x)
dx

x
,

where

Ψp(x) = Res

{
F (x, y)

y
; y = φp(x)

}
.
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Figure 1: The tori constructed for the case of multiple smooth points

Next we will consider the case for torally minimal points.
Definition 0.3. Let T (u, v) be a torus. If H is an analytic function and V(H) its variety then we say H
satisfies the torality hypothesis (TH) on T (u, v) if

z = (x, y) ∈ V(H) =⇒ (Relog x = u =⇒ Relog y = v) .

This condition allows us to use the same annulus in Theorem 9.2.1 to extend the theorem.
Example 2. H(x, y) = (1−x−y) does not satisfy TH on T (log 1, log 1) since |x| = 1 implies that |1−y| = 1.

Consider H(x, y) = 1− x− y+ xy. When H(x, y) = 0. y = x−1
x−1 = 1 and x = y−1

y−1 = 1 so H satisfies TH on

T (log 1, log 1).

So we get the corollary:
Corollary 0.4 (Corollary 9.2.4). Suppose that F = C(x, y), δ∗ is a fixed direction, h∗ is the associated
height function, z∗, a smooth critical point for h∗ and H satisfies TH on T = T (log |x∗|, log |y∗|) then

ar,s ∼ r+s→∞
(r,s)‖δ∗

1

2πi

∫
T

x-rφ(x)-sΨ(x)
dx

x
,

for an appropriate Ψ.

We are primarily interested in how this relates to saddle point integrals which are of the form:∫
C

e-λf(θ)A(θ)dθ.

We will apply a change of variables to get our integrals in the above form.

For δ∗ = (r∗, s∗) a fixed direction and x∗, y∗ a strictly minimal point of H∗ the associated height function we
make the change of variables x = x∗e

iθ giving dx = ixdθ. Let N ′ be the diffeomorphic image of N resulting
from our change of variables.

x = x∗e
iθ is merely a rotation of x∗ by θ so N ′ = [−ε, ε] for some ε > 0.
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We define f := log (φ/φ∗) centered by irθ
s , where φ∗ = φ(x∗) and A := Ψ. In other words:

f(θ) = log(
φ(x∗e

iθ)

φ(x∗)
) +

irθ

s

and
A(θ) = Ψ(x∗e

iθ).

Proposition 0.5 (Proposition 9.2.5 (reduction to Fourier-Laplace Integral)). Let F ∈ C(x, y) and (x∗, y∗)
be a strictly minimal point for a height function of a fixed direction, δ∗. Let f , A and N ′ be as above then

ar,s ∼
1

2π
x-r∗ y

-s
∗

∫
N ′
esf(θ)A(θ)dθ.

Furthermore when (r, s) ‖ δ∗ then f vanishes to at least order 2 at 0.

Proof. See proof of Proposition 9.2.5 in Pemantle and Wilson.

To prove the first part just apply the change of variables to the result of Theorem 9.2.1.

To prove the second part we just need to show that f(0) = 0 and df
dθ

∣∣∣
0

= 0.
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