
The Generalized Chord Diagram Expansion
Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Mathematik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät
der Humboldt-Universität zu Berlin

von

Dipl.-Math. Markus Hihn
(geboren am 27.12.1981 in Frankfurt am Main)

Präsident der Humboldt-Universität zu Berlin:

Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:

Prof. Dr. Elmar Kulke

Gutachter:
1. Prof. Dr. Dirk Kreimer

2. Prof. Dr. Matthew DeVos

3. Prof. Dr. Loïc Foissy

eingereicht am: 07.10.2014
Tag der Verteidigung:

Contents

1 Introduction and outline 5
1.1 Overview . 5

1.1.1 A short introduction to Quantum Field Theory 7

2 Chord diagrams 13
2.1 Rooted connected chord diagrams and Insertion Trees 13
2.2 Root share decomposition and Insertion trees 16
2.3 Branch-left vectors . 20

2.3.1 Branch-left intersection graph duality 24

3 Proof of the chord diagram expansion 27
3.1 Overview . 27
3.2 Renormalization group recurrence . 29
3.3 Leaf labels, diamonds and tree decomposition 33

3.3.1 Shuffling the trees of chord diagrams 35
3.4 Bridge equation . 40

4 Beyond the chord diagram expansion 53
4.1 Using the chord-db and hunt for new numbers 53
4.2 A canonical example . 53
4.3 Nice structures in the generic mixed case 54
4.4 Anomalous Dimension and Catalan like numbers 57

5 Computer related computations 61
5.1 Documentation of the chord programs 61

5.1.1 Using the chord-db . 61
5.1.2 Other programs . 63
5.1.3 Documentation of bintree . 66
5.1.4 Source code . 68

3

1 Introduction and outline

1.1 Overview

“If that’s what’s written, then that’s what’s written”
- Ferengi Rule of Acquisition

In Quantum field theory Dyson-Schwinger equations are integral (fix point) equations
that come from self insertion properties of Feynman graphs: The crucial property that
is needed is that the Feynman amplitudes Xr of a given residue (a residue means a
given external leg structure here) can be obtained by inserting a combinations of other
amplitudes into itself. This leads to a recursive term by term expansion as done in
perturbation theory. Dyson-Schwinger equations are in general hard to control. There
are different reasons for this:

1. In general, for every coefficient of a Dyson-Schwinger equation there are a finite
number of Feynman-Integrals to calculate, which need renormalization, regular-
ization and a good knowledge of special functions that seems to be never enough.
For example in φ4 lower coefficients need a very good knowledge of polylogarithms,
however, for higher coefficients it is still not known what sort of special functions
are involved.

2. Controlling the combinatorics of appearing Feynman graphs: The combinatorics
even in restricted or toy theories is often highly non trivial, as we will shall see
later.

The following Dyson-Schwinger equation is a start, because it has both points better
under control:

G(x, L) = 1− xG(x, ∂−ρ=0)
−1F̃ (ρ) where F̃ (ρ) = (e−Lρ − 1)

∑
k≥0

akρ
k−1

It is a generalization of a Dyson-Schwinger equation that was studied by Kreimer and
Broadhurst, where they studied the anomalous dimension of a fermion field with a
Yukawa interaction gψ̄σψ whose rainbow approximation at dc = 4 (see [2]).
Doing the Ansatz

G(x, L) = 1−
∑

γk(x)Lk with γk(x) =
∑
l≥

γklx
l

5

1 Introduction and outline

we can calculate (in the world of formal series!) the first γkl(−1)k/k! by doing the
derivatives and comparing both sides:

γ11 = −a0
γ12 = −a1a0

γ22 =
1

2
a20

γ13 = −3a20a2 − a21a0
γ23 = 2a1a

2
0

γ33 = −1

2
a30

γ14 = −a31a0 − 15a30a3 − 11a1a
2
0a2

. . .

Setting all ai = 1 and considering all terms up to γ1,6 which we do not list (but which
can be calculate easily), we obtain for γ1(x) = −x−x2−4x3−27x4−248x5−2830x6 . . .
which shows evidence that −γ1 might be the generating function for rooted connected
chord diagrams (see OEIS A000699 for more coefficients)! You might ask yourself,
where the Feynman graphs and integrals are. The answer is that they are already done.
The parameter ρ comes from the analytic regularization (see [16] p. 15pp.). x is the
coupling constant and L is a logarithm of the the momentum scale: L := log(q

2

µ2
). The

recursive form comes from a Mellin transform trick which can be applied on special
Greens functions. The ak are a generalization of 1

ρ(ρ−1) which is all ak = 1. The ak = 1

case was studied in [2] and generalized by Karen Yeats for arbitrary ak when s = 2, N = 1
in [7] . The answer is described in terms of rooted connected chord diagrams, denoted
by R (rooted connected chord diagrams are introduced in Chapter 2) by

G(x, L) = 1−
∑
i≥1

(−L)i

i!

∑
C∈R,b(C)≥i

x|C|âCab(C)−i (1.1.1)

âC is a monomial build from a chord diagram C. b(C) is a positive integer and it is
given by the so called base chord. i = 1 gives the anomalous dimension and is, due
the renormalization group equation, all we need for the whole Greens function. This
reduces a quite general Dyson-Schwinger equation to the combinatorial study of rooted
connected chord diagrams (which is not as simple as one would guess). If we set all
ak = 1, then it also makes clear what numbers Dirk Kreimer and David Broadhurst
in [2] observed. In the following we want to “solve” a bigger class of Dyson-Schwinger
equations, namely for a given s ∈ N≥2 the more general case:

G(x, L) = 1−
∑
k≥1

xkG(x, ∂−ρ=0)
1−skF̃k(ρ) (1.1.2)

6

1.1 Overview

where

F̃k(ρ) = (e−Lρ − 1)
∑
l≥0

ak,lρ
l−1, k ∈ N

Note that we do not require ak,l 6= 0. We define

N := max{k ∈ N : Fk(ρ) 6= 0} and N :=∞ if all Fk 6= 0

Thus the case we summarized shortly before was s = 2, N = 1. It turns out that the
more general case can be also described in terms of rooted chord diagrams but this
time decorated ones with multiplicities that can be described by a non-trivial weight
construction:

G(x, L) = 1−
∑
i≥1

(−L)i

i!

∑
C∈Rdec,b(C)≥i

ωCaĈab(C)−ix
||C|| (1.1.3)

This looks similiar to 1.1.1, we explain shortly the difference: Let d1, . . . , dm be powers
of x of the initial Dyson-Schwinger equation which have non zero F̃·, we choose the
decorations D = {d1 . . . dm} ⊂ N, each decoration may be placed at any chord on a
C ∈ R yielding an decorated chord diagram Cdec ∈ Rdec. Where |C| was the numbers
of chords before, it is now the sum of the decorations: ||C|| :=

∑
dk. To construct a

monomial we first need to look at the terminal chords (terminal chords are explained in
section 2.1) of C, it is a finite non-empty set of size M + 1 (which depends on the chord
diagram, of course)

ter(C) = {b(C), t1, . . . , tM} ; b(C) < t1 < . . . < tM

The monomial âC is depending only on t1, . . . , tM In contrary, the weight ωC depends
only on the tree structure of a rooted chord diagram (how to associate an unique tree
to a rooted chord diagram will be explained in sections 2.3).

That this construction works indeed for all our Dyson-Schwinger equation 1.1.3 is
the main result of this thesis.

1.1.1 A short introduction to Quantum Field Theory

“Hear all, trust nothing”
- Ferengi Rule of Acquisition no. 190

“But if we dont’t have a clue to find them, we are lost. That’s it: We have
to get lost ourselves. We are going to build a get lost machine. A get lost
machine was deliberatily designed so that you never knew where you go.”
Dr. Snuggles, “The Great Disappearing Mystery”

Quantum field theory is the unification of special relativity with quantum mechanics
to understand the behaviour of subatomatic particles like photons, electrons, etc. While

7

1 Introduction and outline

physicists apply quantum field theory with enormous success to experiments and obser-
vations in the particle colliders (like the discovery of the Higgs boson recently), there
are a lot of open questions. For example from a mathematical viewpoint: How to make
this theory well defined (Haags theorem, products of distributions, path integral, etc.)?
A lot of mathematical techniques were developed to attack these problems (the theory
of algebraic quantum field theory, non-commutative geometry, etc.).
From a physicist viewpoint: How to get better accuracy in the comparison with experi-
ments? While the use of newer mathematical QFT models for physicists calculations is
still limited, a pragmatic approach that physicists regularly use is the the scattering the-
ory, which calculate the first coefficients of the so called S-Matrix. The scattering theory
is only an approximation to the real world, it corresponds to the real world experiments,
with very good accuracy, though. However, this is still very complicated, the calculations
need the help of Feynman diagrams to keep track of very complicated integrals and a lot
of intrinsic calculations were used. This made it hard for mathematicians to understand
what was going on in the scattering theory of Quantum Field Theory. Kreimer observed
that some techniques which were already known in physics can be interpreted through
algebraic structures: The formulation of the BPHZ mechanism by a Hopf algebra, led to
enormous interest in number theory and algebra for Quantum Field Theory (the recent
success of the parametric representation of Feynman integrals, the theory of combina-
torial Dyson-Schwinger equation and mathematically defined Feynman rules is another
story that is just in its beginnings). There are also applications for physics calculation
see for example (see [2]).
There are a lot of introductory texts on Quantum Field Theory.1 While it is not a
problem to define non-interacting particles (Wightman’s Axioms), it is hard to define
what particle interaction should be. Sadly, as mentioned before this exactly what physi-
cists want to have! Roughly speaking, the S-Matrix is a formal series, where the n-th
summand is given by an integration over n closed loops given by quantum fields.2 A
quantum field looks like:

φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
e−iωpt+ip·~xa(p) + eiωpt−ip·~xa†(p)

)
where x = (~x, t)

where a† is called creation operator and a annihilation operator, which both are distri-
bution valued. In a real-world Quantum field theory these operators depend on a mo-
mentum (which is a real vector), a spin state and a particle species (bosonic/fermionic).
Luckily, products of creation, annihilation operator can be evaluated, depending on
their momentum, spin state and particle species. This leads to the application of Wick
contractions and in the end to the development of Feynman graphs. This being said,
Feynman graphs encode a complicated nested integral of quantum fields, that can be
ill-defined. To cure singularities of those integrals, renormalization techniques are used

1for physicists one of standard introductory text books to mention are for example [8] or [11]), for
mathematicians the book of Folland([4]) is a very good start

2To develop it accurate a lot more techniques are needed like the time ordering operator, the distinction
of non-interacting and interaction Hamiltonian, etc.

8

1.1 Overview

and the values obtained after this process are the values of renormalized Feynman rules.

The before mentioned Hopf algebra structures allow to study fixpoint equations in the
Hochschild cohomology of the Hopf algebra of Feynman graphs. By applying Feynman
rules, they yield Dyson-Schwinger equations which we study here.

Classically, Dyson Schwinger Equations (in short DSE) are derived from the path
integral formalism. Since this formalism is a mathematical problem itself, we can just
leave it as inspiration for defining mathematical well defined objects. This is were the
Hopf algebra of Feynman graphs come into play. We distinct between combinatorial
Dyson Schwinger equations which are fix point equations in the Hochschild cohomology
of HFG, HRT

3 and analytic Dyson Schwinger equation which are fix point equations over
the ring formal series C[[x, L]]. The Hopf algebra of decorated trees is a good model for
true Quantum field theories, because the number of primitive graphs is countable. They
are related by renormalized Feynman rules. A class of combinatorial Dyson-Schwinger
equations in HRT is given by s ∈ Z≥0:

X = 1−
∑
k≥1

xkBk
+(X1−sk(x))

where Bk
+ is a Hochschild-1-Cocycle in the Hopf algebra of rooted trees: It grafts a forest

(that is a product of trees) under a root that is decorated by the integer k. Under certain
renormalized Feynman rules (see [16] it leads to the analytic Dyson-Schwinger equations
1.1.2, that we will study here. This class of combinatorial Dyson-Schwinger equations
is a simplification of systems that are relevant in quantum field theory (see Example
3.4 in [16]). Some solutions of combinatorial Dyson-Schwinger equations form a sub
Hopf algebra. In the Hopf algebra of rooted trees the combinatorial Dyson-Schwinger
equations that form sub Hopf algebras are described by the following theorem (for more
details see Theorem 4 of [3]).

Theorem 1.1.1. Let f be a formal power series over C with f(0) = 1, then the following
assertions are equivalent:

1. The coefficients of the solution of X = B+(f(X)) span a sub Hopf algebra of HRT

2. There exists (α, β) ∈ C2 such that

(1− αβh)f ′(h) = αf(h)

3. There exists (α, β) ∈ C2 such that

f(h) =

1 α = 0

eαh β = 0

(1− αβh)−1/β αβ 6= 0
3Here HFG denotes the Hopf algebra of Feynman graphs of some Quantum Field Theory and HRT

the Hopf algebra of decorated rooted trees. For an introduction into both Hopf algebras, see [6]

9

1 Introduction and outline

While most of the situations that happen in physics can be encoded in the Hopf
algebra of decorated trees, the Hopf algebras of Feynman graphs are more complicated.
For example, the Hochschild 1-Cocycles in the Hopf algebra of decorated trees are the
grafting operators Bk

+, that we mentioned before. In the Hopf algebra of Feynman graphs
there are similar grafting operators Bk,r

+ to primitive graphs with loop number k and
residue r (see [5], [16]). However, to ensure that they fulfill the Hochschild 1-Cocycle
property (which is crucial for the formulation of Feynman rules on these Hopf algebras)

∆B+ = (1⊗B+)∆ +B+⊗ 1

one has to consider quotients over some Hopf ideals described for example by the Slavnov-
Taylor identites in the Hopf algebra of Feynman graphs of QCD (see [13]).
An analytic DSE is an equation that comes from a combinatorial DSE after applying

some renormalized Feynman rules. When using analytic regularization it can sometimes
be transformed into the following form:

G(x, L) = 1 + sign(s)
∑
k

G(x, ∂−ρ=0)
skFk(ρ)

where G(x, L) is a formal power series

G(x, L) = 1 + sign(s)
∑
k,l≥1

γk,lx
kLl

the parameter x is called the coupling constant and L = log(q2/µ2) is a logarithm of
mass scales. The formal power series γl(x) = [Ll]G(x, L) can be constructed recursively
from γ1(x) by the renormalization group equation

γk = γ1(1 + sign(s)x∂x)γk−1

. For its outstanding importance γ1(x) has an own name and is called the anormalous
dimension4. It describes the β-function (see [12] and is important in physics This renor-
malization group equation was proved in Theorem 4.10 of [16].
Analytic Dyson Schwinger equations give a possibly infinite system of differential

equation of the self energy in quantum field theories and therefore are a good way to
approximate the Greens function.
Starting on the combinatorial side, the problem that arises first is a combinatorial ex-

plosion, even on some Dyson-Schwinger equations over the Hopf algebra of rooted trees
(which is a good approximation to the Hopf algebra of Feynman graphs). However, some
solutions (to arbitrary order) are well known for a certain class of cDSE. A messy math-
ematical problem is the transformation from combinatorial to analytic Dyson-Schwinger
equation, since an unsatisfied interchange of summation and integration comes into play.
However, besides that the analytic side has a nice combinatorial flavour of its own.

4here the name dimension comes from the slang of physicists calling different physical units dimension

10

1.1 Overview

The perturbative Greens function of a Dyson-Schwinger equation can be solved by
comparing coefficients and resolving it term by term. For example, let us try to get the
first coefficients from

G(x, L) = 1− xG(x, ∂−ρ=0)
−1F (ρ, L)

where F (ρ, L) = (e−Lρ − 1)1
ρ

∑
k≥0 akρ

k for some real numbers ak. First, we do the
Ansatz:

G(x, L) = 1−
∑
k≥1

γk(x)Lk where γk(x) :=
∑
l≥k

γk,lx
l

Thus, we can use the geometric series (this makes sense in the topology of formal series)
to get:

G(x, ∂−ρ=0)
−1 =

∑
n≥0

(∑
k≥1

γk(x)∂k−ρ=0

)n

So we need to calculate:

∂n−ρ=0 [F (ρ, L)] = ∂n−ρ=0

[∑
l≥1,k≥0

(−L)l

l!
ak(−ρ)l+k−1

]
=

=
∑

l≥1,k≥0,l+k−1=n

(−L)l

l!
akn! =

∑
0≤k≤n

ak
n!

(n− k + 1)!
(−L)n−k+1

Note that this can be rewritten nicely:

∂n−ρ=0(e
−Lρ − 1)F (ρ) = F (−∂L)(Ln) where F (ρ) =

1

ρ

∑
k≥0

akρ
k

Back to the equation we can calculate the first coefficients of γ1 immediately:

G(x, L) = 1−

(∑
n≥0

(∑
k≥1

γk(x)∂k−ρ=0

)n)
F (ρ, L)

= 1− x

id−ρ=0 +
∑
k≥1

γk(x)∂k−ρ=0 +

(∑
k≥1

γk(x)∂k−ρ=0

)2

+ . . .

F (ρ, L)

And since

x

(∑
k≥1

γk(x)∂k−ρ=0

)
F (ρ, L) = x

∑
n≥1

γn(x)
∑

0≤k≤n

ak
n!

(n− k + 1)!
(−L)n−k+1

11

1 Introduction and outline

= x2γ1,1

(
1

2
a0L

2 − a1L
)

+O(x3)

we get

G(x, L) = 1 + L(xa0 + x2a0a1) +O(xL2) +O(x3L)

12

2 Chord diagrams

2.1 Rooted connected chord diagrams and Insertion
Trees

“Alles mit Bildern. Zeig doch mal dem Herrn die Bilder!”
aus “Du und dein Koerper” von Loriot

Sometimes, a chord diagram is defined to be a 3- regular graph where each vertex lies
on a circle. For this we would need to fix a plane embedding such that all edges that
are not in the circle are inside the circle. Also, we would need to identify homeomorphic
transformations. While this is the geometric picture we have in mind, we first use an
algebraic definition. This will make it easier for us, to talk about crossings and the root
share decomposition without having any topological concerns. However, later on we will
switch to the geometric perspective whenever it is more helpful.

Definition 2.1.1 (Rooted chord diagram). A rooted chord diagram D of size n is a
fix point free involution D ∈ S2n. That is a permutation such that D2 = idS2n with
D(i) 6= i for all i = 1 . . . 2n. Equivalently it is a permutation that can be written as
disjoint transpositions without fixed points:

D = (x1y1)(x2y2) · · · (xnyn)

where x1 < . . . < xn and xi < yi for all i = 1 . . . 2n. Each transposition is called a chord
and (x1y1) is called the root chord.

To justify the name rooted chord diagram, draw a circle and mark 2n vertices on
it. Choose a distinct vertex as the root and label the vertex 1, enumerate the vertices
counter-clockwise and draw a chord between vertex xi and vertex yi for each transposi-
tion.

We say that a chord (xiyi) crosses a chord (xjyj) if

xi < xj < yi < yj or xj < xi < yj < yi

.
To be able to define the property of being connected on a chord diagram, we introduce

intersection graphs now:

Definition 2.1.2 (Labeled intersection graph). Let c1, . . . , cn be a fixed labeling of the
chords. The labeled intersection graph of a chord diagram C with respect to that labeling

13

2 Chord diagrams

is a vertex-labeled simple graph Γ(C) = (V,E) given by

V = {1, . . . , |C|} E = {(i, j) : ci crosses cj}

If there is no risk of confusion, we always identify the labelings with the underlying
objects (i.e. vertices, edges, chords, etc.).
If the labeled intersection graph of a rooted chord diagram is connected, we call the

chord diagram connected otherwise we call it disconnected. The chord diagrams of a
disconnected chord diagram D induced by the connected components of the intersection
graph are called the connected components of D. We denote the set of all rooted
connected chord diagrams R.

Example 2.1.3. A rooted connected chord diagram C with its intersection graph Γ(C):

C = 1

2

34

5 Γ(C) = 1

2

3

4

5

1 crosses 2, 3, 4 (also vice versa: 2 crosses 1, etc.) and 4 crosses 5. Removing for example
the chord 4 results in a disconnected intersection graph, so this chord diagram is called
disconnected:

C = 1

2

3

4 Γ(C) = 1

2

3

4

Definition 2.1.4 (Intersection order). The intersection order of a rooted chord diagram
C is defined recursively by the following pseudo code:

intersection_order(k, C) {
m := root(C)
label(m) := k
k := k + 1
if |C| != 1 then
foreach D := connected_components(C \ m) traversed counter clockwise
{

intersection_order(k,D)
k := k + |D|

}
}

and start the procedure with

intersection_order(1,C).

14

2.1 Rooted connected chord diagrams and Insertion Trees

From now on we will stick to the intersection order, because it is crucial for later con-
structions.

Example 2.1.5. The picture below shows an example of connected components and
the intersection order. The chord diagram will be a specific example of a canonical class
which we will define later (see Definition 4.2.1). This chord diagram is called CW3(3, 1, 2)
and its two connected components after removing the root chord are indicated by gray
color, the lighter one is the first connected component, the darker one the second con-
nected component. The numbers near the circle indicate the chord’s position in the
intersection order.

C1

C2

1

2

3

4

5

6

78
9

If we want to restrict R to only connected chord diagrams with n chords, we will write
R(n). To a rooted connected chord diagram the terminal set Ter(C) is defined as in [7]:

Ter(C) = {c ∈ C : there is no higher labeled chord d s.t. c crosses d}

Furthermore, the subset of rooted connected chord diagrams restricted to a terminal S.
We notice that every chord diagram has exactly max S chords.

Proposition 2.1.6. The rooted chord diagram is uniquely determined by its labeled
intersection graph.

Proof. Obviously, to every chord diagram there is a labeled intersection graph. For
uniqueness, suppose there are two different chord diagrams C1, C2 with intersection
graph Γ(C1) = Γ(C2). W.l.o.g. there is a crossing in C1 which is not in C2, however,
this means that there is an edge in Γ(C1) that is not in Γ(C2), i.e. Γ(C1) 6= Γ(C2).

Of course, the latter result does not hold if we drop the label. For a labeled intersection
graph Γ the terminal vertices

Ter(Γ) = {v ∈ V (Γ) : v has only smaller neighbours in Γ}

clearly correspond to the terminal chords.

15

2 Chord diagrams

Definition 2.1.7. For a natural number n we define Ter(n) to be the family of all
terminal sets possible for C ∈ R(n)

Ter(n) := {Ter(C) : C ∈ R(n)}

It is actually not hard to see what this family looks like.

Proposition 2.1.8. Let n 6= 1 be a positive integer, then

Ter(n) =
{
{k1, . . . , kl} ∈ Nl : 2 ≤ k1 < . . . < kl = n, l = 1, . . . , n− 1

}
.

If n = 1, then Ter(1) =
{
{1}
}

Proof. The case n = 1 is trivial, because there is only one chord which is terminal.
Note that if n 6= 1, the root is never terminal, so the least terminal chord is 2 for any
chord diagram |C| > 2. The case n = 2 is trivial also, because there is only one rooted
connected chord diagram, which has clearly only 2 as terminal chord. Let n 6= 2, the
statements holds true for Ter(n − 1) by induction. Let C ∈ Ter(n − 1), wedging a
new chord around the root (i.e. adding a chord (1 2n)) or wedges a new chord on a
chord (x y) (i.e. adding a (y − 1)(y + 1)) of C results in any possible set of Ter(n).
Adding a chord in any other way does not change the possible sets, because either we
cross terminal chords that would create a new terminal, which would not yield any new
terminal chord, that we could not construct with wedging, or we didn’t construct a new
terminal which will shift the labels of the old terminals by 1 which is still in any possible
set of Ter(n).

An alternate proof can be done via induction and the help of 2.2.9.

2.2 Root share decomposition and Insertion trees

Beginning at the root we order the vertices of the chord diagram counterclockwise. Let’s
call the edge on the circle between the vertex k and the vertex k + 1 the kth interval
of the chord diagram. The interval between vertex 2|C| and the root is called the 0th
interval. We can insert a rooted connected chord diagram C ∈ R(n) into another chord
diagram D ∈ R(m), by placing the root of C into the 0-th interval of D and the other
end of the root chord and the rest of the chord diagram in the k-th interval of D. This
gives us an insertion operation for every k = 1, . . . , 2|D| − 1. To be more specific all
vertices of C except the root will be shifted in the new chord diagram by k, the root of
D will be shifted by one because it is the neighbour vertex of the root of C and all other
vertices of D (except the vertices with vertex labeling smaller or equal k) will be placed
after the last vertex of C, so their vertex labels are shifted by 2n. The adjacency of the
chords will be derived by C and D. To make this definition precise, we define:

16

2.2 Root share decomposition and Insertion trees

Definition 2.2.1 (Insertion operation of rooted chord diagrams). Let C ∈ R(n), D ∈
R(m) and

C = (x1y1) . . . (xnyn)

D = (x′1y
′
1) . . . (x

′
my
′
m)

there underlying permutation then for each k = 1, . . . , 2m−1 define C ◦kD ∈ R(n+m)
by the following permutation:

(x1, y1 + k)..(xn + k, yn + k)(Hn,k(x
′
1), Hn,k(y

′
1))..(Hn,k(x

′
m), Hn,k(y

′
m))

where Hn,k is defined to be:

Hn,k(x) =

{
x+ 1 if x ≤ k

x+ 2n otherwise

C ◦kD is indeed a rooted connected chord diagram of size n+m, because every integer
from one to 2(n+m) is appearing exactly once in the transpositions, it is fix point free
and the labeling shift does not destroy any crossings but the root chord of C creates
new crossings with at least one chord of D.

Example 2.2.2.

(1, 4)(2, 6)(3, 5) ◦2 (1, 4)(2, 5)(3, 6) = (1, 6)(2, 10)(3, 11)(4, 8)(5, 7)(9, 12)

Remark 2.2.3. Note that the insertion operation is highly non associative and non com-
mutative. If C ◦k D is defined, D ◦k C may not be defined. For example, if C is a chord
diagram with only one chord, then D ◦k C is not defined for k ≥ 2 because there is only
one insertion interval in C by definition.

In the following definition of the root share decomposition, we will need to decompose
a chord diagram. Since by our definition chord diagrams are certain permutations, we
need to define for an expression

A = (a1a2) . . . (a2n−1a2n)

where ak (k = 1..2n) are arbitrary distinct natural numbers, the associated normalized
involution norm(A) by

norm(A) =
(
σ(1)σ(2)

)
. . .
(
σ(2n− 1)σ(2n)

)
where σ sorts the integers, i.e. σ ∈ S2n : aσ−1(1) < aσ−1(2) . . . < aσ−1(2n)

Example 2.2.4. Let A = (13)(28)(57), then norm(A) = (13)(26)(45)

Definition 2.2.5 (Root share decomposition). Let C ∈ R with |C| > 1, there exists a

17

2 Chord diagrams

unique i such that

C = C ′ ◦i C ′′ where C ′ = norm(C \ C1),C ′′ = norm(C1)

and C1 is the first connected component after removing the root temporarily. Note
that C \ C1 is always connected. This unique decomposition is called the root share
decomposition of C.

That this decomposition is well defined, i.e. there is such an unique i, will be shown
in Proposition 2.2.6. Suppose we have a root share decomposition C = C ′ ◦i C ′′ then
we write C ' C ′ ◦i C ′′ if C ′, C ′′ are considedered with the labeling induced by C, which
is not an appopriate labeling for C ′, C ′′ but a shift of it. This is an abuse of notation
but it helps us keep our formulas compact. So for example:

1

2

= 1 ◦1 1 vs. 1

2

' 1 ◦1 2

Proposition 2.2.6. Let D = D′ ◦k D′′ its corresponding root share decomposition and

D′ ' (x′1y
′
1) . . . (x

′
my
′
m)

the corresponding permutation with vertex labels induced from D, then the k is given by

k =

{
y′1 − 2 if |D′| = 1

x′2 − 2 otherwise

Proof. There are two cases two consider:

1. D′ consists only of one chord, then that is root chord chord and its other end
indicates the insertion place. The normalization to D′′ gives the shift of −2.

2. D′ consists of more than one chord. The chords after the root chord are coming
from the second connected component of D after removing the root. However, D′1
is inserted into the interval before the vertex x′2 and the count of the interval starts
with 0, therefore we have k = x′2 − 2.

The last proposition justifies that such a unique k exists.

Example 2.2.7. Consider the chord diagram CW3(3, 1, 2) as a permutation. With the
notation of the last proposition we have

D = (1, 5)(2, 12)(3, 15)(4, 7)(6, 9)(8, 10)(11, 13)(14, 17)(16, 18)

and on the right hand side

D′ = (1, 5)(4, 7)(6, 9)(8, 10), D′′ = (2, 12)(3, 15)(11, 13)(14, 17)(16, 18)

18

2.2 Root share decomposition and Insertion trees

thus k = 4− 2 = 2. The picture below shows the chord diagrams:

1

5 467
8

9

10

11

12

13

14

15

16

17
18

2

3

=

1

5 467
8

9

10

◦2

11

12

13

14

15

16

17
18

2

3

Remark 2.2.8. Every C ∈ R(n) can be decomposed into C1, . . . , Cn ∈ R(1) by applying
recursively n− 1 insertion operations. This decomposition is unique.

For the next proposition we introduce the following notation: Let A ⊆ Z and n ∈ Z,
then A+ n is defined to be the set {a+ n : a ∈ A}.
Proposition 2.2.9. Let C = C1 ◦k C2 for some k = 1, . . . , 2|C2| − 1 then

Ter(C) = (Ter(C1) + |C2|) ∪ (Ter(C2) + 1)

Proof. Let C = C1 ◦k C2. If |C1| = 1, then Ter(C2) gets shifted by 1 but also

Ter(C1) + |C2| = |C2|+ 1 ⊆ Ter(C2) + 1

since the last chord is always terminal. Now consider |C1| 6= 1, then by definition of the
insertion operation the terminals stay the same only modified by a labeling shift (the
chord structure of C1 and C2 stays the same for the terminals and the only new crossings
that can appear are crossings with the root which is not terminal). So it is left to show
that Ter(C1) is shifted by |C2| and Ter(C2) is shifted by 1. The first holds true, because
after removing the root of C the remaining chords of C1 form connected components
that lie counterclockwise after C2. The second holds true, because the newly inserted
root shifts all labels of C2 by one.

Example 2.2.10. Let C1, C2 be the two trivial chord diagrams and consider C1 ◦1 C2:

1

2

= 1 ◦1 1

hence Ter(C1) = Ter(C2) = 1 and so the rooted connected chord diagram with two
chords C1 ◦1 C2 has indeed Ter(C1 ◦1 C2) = ({1}+ 1) ∪ ({1}+ 1) = {2}.
The previous proposition makes it possible for us to reconstruct the number of rooted

chord diagrams with a fixed terminal set. However, the shifts in the labelings causes
some trouble to reconstruct a general recursive formula. We will explain in a short
example how the reconstruction is possible in a specific case.

19

2 Chord diagrams

Example 2.2.11. Let’s calculate the numberR{3,5} of rooted connected chord diagrams
with terminal set {3, 5}. If we insert C1 with ter(C1) = {3} at any place into a diagram
C2 with ter(C2) = {2}, we get a chord diagram with the wanted terminal sets. The
same holds true for C1 with ter(C1) = {1} and C2 with ter(C2) = {2, 4}. We notice that
these two cases are the only ones for {3, 5}. So by looking up R{3} and R{2,4} we obtain

|R{3,5}| = (2 · 3− 1)|R{3}|+ (2 · 4− 1)|R{2,4}| = 30

To every rooted connected chord diagram C, there is a unique tree T (C) that is
constructed recursively by the root share decomposition. To transport the root share
decomposition to trees, we introduce the

Definition 2.2.12 (Insertion operation on rooted plane trees). Let T, T ′ be rooted plane
trees where the edges are labeled in pre-order (in our definition the root has a virtual
hook edge which we label always by 1). The rooted plane tree is T ◦k T ′ is defined by
putting the hook edge of T into the edge k of T ′ and placing T as left sub tree and the
subtree of T ′ rooted at the bottom end of k as right subtree.

Example 2.2.13. Let S = and T = then S ◦2 T =

2.3 Branch-left vectors

If we consider the chord diagram expansion for the analytic Dyson-Schwinger equation
(1.1.2) for s 6= 2 and N ≥ 2, each chord diagram monomial is not appearing once but
weighted by a weight that depends on a chord diagram invariant that is constructed
from the tree T (C), we call it the branch-left vector ν(C) and we will explain it in this
section.
Let us consider the associated binary tree T (C) to C as already defined in [7] and

discussed in definition 2.2.12. For the sake of completness we explain how to obtain
a binary tree T (C) step by step, illustrated with a an example. First write down the
decomposition of C into chord diagrams of size one as explained already in 2.2.8 and
take the induced labelings on them:

1

23

' 1 ◦2
(

2 ◦1 3

)

T

1

23
 =

1
◦2
(

2
◦1

3

)
Associate to each chord diagram of size one with label l a tree which contains only a
root labelled l and a virtual hook. The insertion operation of trees as explained at the

20

2.3 Branch-left vectors

end of the last section associates to every chord diagram a leaf labeled binary tree T (C)
in this way. This tree is unique for every rooted chord diagram and what leaf labeled
binary trees are possible was described in [7] and is explained in detail in Section 3.3.

Every chord corresponds to a leaf. Consider the leaf with label k. When we walk
towards the root, we can count the edges passed that are heading left before heading
right for the first time which we call the k-th component of the branch left vector ν(C).

This is only a very informal definition.
To make it more precise, we use a representation of a binary tree as a natural number

that is inspired by a representation that is common in computer science (see [14]): Let
n =

∑
k≥0 bk2

k, bk ∈ {0, 1} we say that n represents a binary tree if

b0 = 1 and for all n ∈ N : b2n+1 = b2n+2, and bn = 0 must imply b2n+1 = b2n+2 = 0.

We say that a vertex v is represented by k in n if the coefficient of the power 2k in n is
one, i.e. bk = 1. The binary tree T is represented by n(T) if

1. If v is the root of T , then v is represented by 0 in n(T)

2. If v is a left child of a vertex w in T that is represented by k in n(T), then v is
represented by 2k + 1 in n(T).

3. If v is a right child of a vertex w in T that is represented by k in n(T), then v is
represented by 2k + 2 in n(T).

Let T be a leaf labeled binary tree and n(T) the number that represents T and let
λ1, . . . , λN be the leaves represented by n1, . . . , nN in n(T). Let

c(k) : nk = c1 > . . . > cM(k) = 0

the unique path from the leaf λk to the root where every cl denotes the vertex-
representation in n(T) and M(k) − 1 the length of the path. We say that the leaf
λk has branch-left degree νk if

νk(T) = max{N : cl(k) ≡ 0 (mod 2) ∀l = 1, . . . , N}

Example 2.3.1. Let T =
λ4

λ1 λ5

λ3

λ2

then the natural number that represents T is

n(T) = 20 + 21 + 22 + 23 + 24 + 27 + 28 + 217 + 218 = 393631

21

2 Chord diagrams

which can be seen by drawing the numbers that represent the vertices in the tree:

0

1

3

7 8

17 18

4

2

The leaves are represented as follows: λ1 by 17, λ2 by 2, λ3 by 4, λ4 by 7 and λ5 by 18.
So we have:

c(1) : 17 > 8 > 3 > 1 > 0

c(2) : 2 > 0

c(3) : 4 > 1 > 0

c(4) : 7 > 3 > 1 > 0

c(5) : 18 > 8 > 3 > 1 > 0

and we see that ν1 = 0, ν2 = 1, ν3 = 1, ν4 = 0, ν5 = 2.

Definition 2.3.2 (Branch-left vector). Let C be a rooted, connected chord diagram of
size n and T (C) its corresponding unique insertion tree, then ν(C) = (ν1, . . . , νn) is said
to be the branch-left vector of C if νk = νk(T (C)) for all k = 1 . . . n.

Example 2.3.3. The labeling of chords which correspond to non-zero components in
the branch-left vectors are printed in bold and the branch-left vector is as calculated in
the previous example.

C = 1

2
34

5

T (C) =
4

1 5

3

2

ν(C) = (0,1,1, 0,2)

Note that the sum over all components is n− 1 whenever |C| = n. We can make this
statement more precisely:

Proposition 2.3.4. Let V(n) = {ν(C) = (ν1, . . . , νn) : C ∈ Rn} the set of branch
left vectors that are possible for rooted chord diagrams with size n and V(S, n) =
{ν(C) : C ∈ R, ter(C) = S} the set of branch left vectors that are possible with fixed
terminal set S. Then we have

1. V(n) =
{
ν ∈ Zn≥0 :

∑M
k=1 νk < M ∀M = 1 . . . n,

∑n
k=1 νk = n− 1

}
2. For S 6= {1}: V(S, n) =

{
ν ∈ V(n) : νk 6= 0 for all k ∈ S

}
and for S = {1} we

have V(S, 1) = {(0)}

22

2.3 Branch-left vectors

Proof. 1. Each C ∈ Rn decomposes into n primitive chord diagrams which gives us
n−1 insertion operations. Each insertion operation produces exactly one additional
left step on some leaf, thus V(n) ⊂ {

∑n
k=1 νk = n− 1}. It is left to prove that for

ν = ν(C) the inequalities

M∑
k=1

νk < M for all M = 1, . . . , n

hold. But it will be noticed in Section 3.3 that T (C) can be uniquely grafted by
introducing a new root and putting some smaller tree H1 on the left and a smaller
tree H2 on the right. H1 resp. H2 correspond uniquely (by taking the induced
labeling of C) to smaller rooted connected chord diagrams D1 resp. D2. Since
their branch left vectors do not intersect with each other, the statement follows by
induction.

2. First, we notice that whenever we insert an insertion tree with some νk 6= 0 into
another insertion tree with νl 6= 0, the resulting branch-left components are never
zero, either, however exactly one component is increased by one. So, the state-
ment follows inductively by doing the root share decomposition by continuously
removing smallest removable sub trees containing 1 which are explained in Section
3.3

Example 2.3.5. For n = 4 and S = {3, 4} the sets V(n), V(S, n) are:

V(4) =
{
ν ∈ Z4

≥0 : ν1 < 1, ν1 + ν2 < 2, ν1 + ν2 + ν3 < 3,
4∑

k=1

νk < 4 and
4∑

k=1

νk = 3
}

=
{

(0, 1, 1, 1), (0, 0, 2, 1), (0, 1, 0, 2), (0, 0, 1, 2), (0, 0, 0, 3)
}

V({3, 4}, 4) =
{

(0, 1, 1, 1), (0, 0, 2, 1), (0, 0, 1, 2)
}

Now, we can define the weight mentioned in the introduction of this section. Remem-
ber that it is needed for the chord diagram expansion of our Greens function.

Definition 2.3.6. [The weight of a decorated rooted connected chord diagram] For a
chord diagram C with branch-left vector ν(C) and C ∈ Rdec with decoration {d1, . . . , dn}
define

ω(C) =

|C|∏
k=1

(
dks+ νk(C)− 2

νk(C)

)
where s ∈ Z≥2 is the parameter given by our Dyson-Schwinger equation.

So the data we need is the terminal set and the branch left vector of a chord diagram,

23

2 Chord diagrams

the next tables show how many chord diagrams there are for |C| = 4 and |C| = 5. The
numbers appearing in those tables are still mysterious for us.

|C|=4 (0,1,1,1) (0,0,2,1) (0,1,0,2) (0,0,1,2) (0,0,0,3)
2 3 4 1
2 4 1 2
3 4 2 4 2
4 1 2 2 4 6

C=5 1111 0211 1021 0121 0031 1102 0202 1012 0112 0022 1003 0103 0013 0004
2 3 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 5 1 0 0 0 0 2 0 0 0 0 0 0 0 0
2 4 5 2 0 4 0 0 0 0 2 0 0 0 0 0 0
2 5 1 0 2 0 0 2 0 4 0 0 6 0 0 0
3 4 5 3 6 0 4 0 0 0 0 2 0 0 0 0 0
3 5 2 4 0 2 0 4 8 0 4 0 0 6 0 0
4 5 3 6 6 12 18 0 0 2 6 12 0 0 6 0
5 1 2 2 4 6 2 4 4 8 12 6 12 18 24

The entries are the number of rooted chord diagrams that correspond to the given
terminal set as indicated in the row and the branch left vectors as indicated in the
column. We see that the table of |C| = 4 is nicely embedded in the table of |C| = 5,
which motivates the following proposition:

Proposition 2.3.7. Let Rn(S) be the the rooted chord diagrams of size n with terminal
set S, then there is an embedding ι : Rn(S) ↪→ Rn+1(S+ 1∪{2}) where S+ 1 := {s+ 1 :
s ∈ S}. More precisely ι maps (0, ν2, . . . , νn) to (0, 1, ν2, . . . , νn)

Proof. Add a chord around the root and observe what happens in the insertion tree: A
leaf with label 2 is grafted on the right of the root and all original chords except the
first has its label increased by one.

2.3.1 Branch-left intersection graph duality

Consider the set of chord diagrams of size n with given terminal set and a fixed value
of the last branch-vector component:

Rn(S,m) = {C ∈ Rn : ter(C) = S, νn(C) = m}

and consider the set of intersection graphs coming from chord diagrams of size n with
given terminal set and a fixed number of vertices adjacent to the last vertex:

Gn(S,m) = {Γ(C) : C ∈ Rn, ter(C) = S, δ(n) = m}

where δ denotes the vertex degree here. Then we have the conjecture that there is a
bijection from Rn(S,m) to Gn(S,m) which is not the identity map C 7→ Γ(C). We do
not know how to construct this bijection but checked that |Rn(S,m)| = |Gn(S,m)| for
every possible value of m and S for n = 1 . . . 8. The following example gives a little
insight of what we are talking about here:

Example 2.3.8. For C = |5| with ter(C) = {2, 3, 5} we have the following chord
diagrams:

24

2.3 Branch-left vectors

C Γ(C) T(C) δ = (δk(C))k ν = (νk(C))k

10

21

3140

52

1

2
3

4
5

4

1 5

3

2

(3,1,1,1,2) (0,1,1,0,2)

10

21

3140

52
1

2
3

4
5

1

4 5

3

2

(3,1,1,2,1) (0,1,1,0,2)

10

21

3141

51

1

2
3

4
5 1 4

5

3

2

(4,1,1,2,2) (0,1,1,1,1)

So we see that

R5({2, 3, 5}, 2) =

10

21

3140

52

, 10

21

3140

52

and

G5({2, 3, 5}, 2) =

10

21

3140

52

, 10

21

3141

51

In this case, only the end point of the root is changed. However, this is a special
coincidence here. We do not know how this works in general. We have checked this
conjecture for all chord diagram up to size eight and all corresponding terminal sets.

25

3 Proof of the chord diagram
expansion

3.1 Overview

From now on, if nothing else is said, we consider only rooted connected chord diagrams
and call them for short chord diagrams. Let s ∈ Z≥2 then the aim of this chapter is to
prove that the analytic Dyson-Schwinger equation

G(x, L) = 1−
∑
k≥1

xkG(x, ∂−ρ=0)
1−sk(e−Lρ − 1)Fk(ρ) where Fk(ρ) =

∑
l≥0

ak,lρ
l−1

has as formal solution the combinatorial expansion in terms of chord diagrams:

G(x, L) = 1−
∑
k≥1

(−L)k

k!

∑
b(C)≥k

ωC âCadb(C),b(C)−kx
||C||

In the latter equation we explain and recall the notation: ||C|| is the sum of all deco-
rations (a decoration is an integer d that associates a chord to some coefficient ad,l for
some l) of C, aC is a monomial constructed from the terminal sets that keeps track
of decorations of the chord diagram, b(C) is the smallest terminal chord and ωC is the
weight as defined in Definition 2.3.6. So to be more specific, let

ter(C) = {t0 < . . . < tn}

and dk be the decoration of the k-th chord, then we define:

||C|| :=
|C|∑
c=1

dc

âC :=

(
n∏
c=1

adtc ,tc−tc−1

)
·

 ∏
k 6∈ter(C)

adk,0

Here the hat does not signalize an operator but that the monomial does not contain
adb(C),b(C)−k. The symbol b(C) denotes the label of the base chord and is defined as
follows:

27

3 Proof of the chord diagram expansion

Definition 3.1.1 (Base chord b(C), Ĉ and ωĈ). For every chord diagram C ∈ R, let
ter(C) = {t0 < . . . < tn} the set of terminal chords ordered by its labeling, then the
smallest terminal chord t0 is called the base chord and we denote it by b(C). Ĉ is defined
to be the chord diagram without its base chord. The weight (see 2.3.6) of Ĉ is therefore
defined by

ωĈ =
∏

k∈C,k 6=b(C)

(
νk + sdk − 2

νk

)

A simple example of the latter notations can be found at 3.2.3.
Because the theorem is not shown, yet, we want to keep track of which G we are

talking about. The combinatorial expansion will be called Gcomb:

Gcomb(x, L) = 1−
∑
k≥1

(−L)k

k!

∑
b(C)≥k

ωC âCadb(C),b(C)−kx
||C||

and the G(x, L) first mentioned will be therefore called Gdif:

Gdif(x, L) = 1−
N∑
k=0

xkGdif(x, ∂−ρ=0)
1−sk(e−Lρ − 1)Fk(ρ)

where Gdif(x, L) = 1−
∑
k≥1

Lkγk(x) and γk(x) =
∑
l≥k

γk,lx
l

For simplicity we define gdifk (x) = (−1)k
k!

γk(x) and analogously

gcomb
k (x) =

∑
C∈Rdec

b(C)≥k

x||C||ωC âCadb(C),b(C)−k

Theorem 3.1.2. With the notation explained above, we have

Gcomb(x, L) = Gdif(x, L)

Proof. To achieve this we need to show:

1. gdif1 (x) = gcomb
1 (x) (“the starting value is equal”):

gdif1 (x) =
∑
C∈R

x||C||ωC âCadb(C),b(C)−1

This relies mainly on Theorem 3.4.13 and the renormalization group equation
stated below (which is proven in the next section). The complete proof will be
given after Theorem 3.4.13.

28

3.2 Renormalization group recurrence

2. gdif and gcomb follow the same recurrence (Renormalization Group Equation), i.e.

g
dif/comb
k (x) = g

dif/comb
1 (x) · (sx∂x − 1)g

dif/comb
k−1 (x)

That gcomb
k satisfies the latter equation will be proven in Theorem 3.2.1. For gdif

this was already done in Theorem 4.10 of [16] which makes use of the Dynkin
operator S ? Y .

The proof of Theorem 3.4.13 relies on the Bridge equation (Lemma 3.4.12) which
requires some lemmata and propositions. The figure below illustrates the dependencies
of the Bridge equations and its final result Theorem 3.4.13:

Lemma 3.2.2 Proposition 3.4.3

Lemma 3.4.5 Lemma 3.4.4

Lemma 3.4.5

Lemma 3.4.12Prop. 3.4.10

Theorem 3.4.13

3.2 Renormalization group recurrence

The aim of this section is to prove that gcomb(x) satisfies the same recurrence as gdif
does. We briefly recall that:

gcomb
k (x) =

∑
C∈Rdec

b(C)≥k

x||C||ωC âCadb(C),b(C)−k

and

gdifk (x) =
(−1)k

k!
[Lk]Gdif(x, L)

Theorem 3.2.1 (Renormalization group equation for gcomb).

gcomb
k (x) = gcomb

1 (x) · (sx∂x − 1)gcomb
k−1 (x)

For this theorem we need to answer the following two questions:

1. How is the monomial of a chord diagram C recovered from the root share decom-
position C = C1 ◦r C2?

29

3 Proof of the chord diagram expansion

2. How is the weight of a chord diagram C recovered from the root share decompo-
sition C = C1 ◦r C2?

The following two lemmas answer these questions and together they are enough to
prove the latter theorem 3.2.1. The monomial associated to a decorated chord diagram
C ∈ Rdec with root share decomposition C = C1 ◦k C2 can be reconstructed from C1, C2

in the following sense:

Lemma 3.2.2 (RSD monomial Lemma). Let C1, C2 ∈ Rdec with C = C1 ◦k C2 and
d, d1, d2 the corresponding decorations of the base chords,i.e. d := d(b(C)), d1 :=
d(b(C1)), d2 := d(b(C2)), then

âCad,b(C)−l = âC1
ad1,b(C1)−1âC2

ad2,b(C2)−l+1

where 1 < l < b(C)

Proof. The proof works the same as the proof of Lemma 4.2 in [7] but keeping track of
decorations.

Example 3.2.3. Let C be the wheel with three spokes as a rooted connected chord
diagram and choose as decoration a two for the last chord (here the labeling is trivial
and so only the non-trivial decoration is included in the pictures):

2

As calculated earlier C = C1 ◦2 C2

2

= ◦2

2

The left hand side of the previous Lemma is:

âCad,b(C)−l = a21,0a2,3−l

The right hand side of the previous Lemma contains

âC1
= 1

ad1,b(C1)−l = a1,0

âC2
= a1,0

ad2,b(C2)−l+1 = a2,2−l+1

and multiplying these monomials confirms the lemma.

Returning to the general case, associate a weight to each branch-left vector: ωC :
ν(C) 7→ ωC , to obtain an analogue of the renormalization group equation. As in the

30

3.2 Renormalization group recurrence

chord diagram expansion case we need to understand how the weight changes when we
increase one component by one: ωk : ν 7→ ω + ek. When looking at the root share
decomposition: C = C ′ ◦k C ′′, we know that branch-left vector ν(C ′) is copied into C so
only the branch left vector of C ′′ is modified. This yields the following equation:

2n−1∑
k=1

ω(C ′ ◦k C ′′) = ω(C ′)
2n−1∑
k=1

ω(◦kC ′′)

where ◦k is defined as follows:

Definition 3.2.4 (Virtual insertion ◦k). Let C ∈ Rdec then ◦kC is defined to be the
same chord diagram but with modified tree: T (◦kC) is T (C) but with an additional
vertex v and an additional left child inserted before the k-th vertex w. As a result w
will be the right child of v.

This definition seems to be very artificial. So we give an example that it will motivate,
where we fix two chord diagrams and consider all possible insertions:

Example 3.2.5. Let C ′ = and C ′′ = and the associated trees with the

induced labeling are: T1 := T (C ′) =
1 5

and T2 := T (C ′′) =

2 4

3 .

T1 ◦1 T2 =
1 5

2 4

3
T1 ◦2 T2 =

1 5 2 4

3

T1 ◦3 T2 =

1 5

2

4

3

T1 ◦4 T2 = 2

1 5

4

3

T1 ◦5 T2 =
2 4

1 5

3

We note that the branch left vector of C ′ is never changed, so we can replace it as a
marker vertex. This is what the virtual insertion does:

T (◦2C ′′) =

2 4

3

31

3 Proof of the chord diagram expansion

Lemma 3.2.6. Let C ′, C ′′ be decorated chord diagrams where |C ′′| = n, then:

2n−1∑
k=1

ω(C ′ ◦k C ′′) = ω(C ′)ω(C ′′)(s‖C ′′‖ − 1)

Proof. We remember that C ′ ◦k C ′′ does not affect the tree form of C ′ in any kind so
that we get:

2n−1∑
k=1

ω(C ′ ◦k C ′′) = ω(C ′)
2n−1∑
k=1

ω(◦kC ′′)

Now notice that there are νk + 1 possibilities to increase the left branch by 1.

2n−1∑
k=1

ω(◦kC ′′) = (ν1 + 1)ω+1(C ′′) + . . .+ (νn + 1)ω+n(C ′′)

where ω+k(C ′′) is defined as the weight of C ′′ after increasing the k-th component of the
branch left vector:

ω+k(C ′′) = ω(C ′′)

(
1 +

sdk − 2

νk + 1

)
Plugging this into the latter equation, we get the result:

2n−1∑
k=1

ω(◦kC ′′) = ω(C ′′)
n∑
k=1

(νk + 1 + sdk − 2)

= ω(C ′′)

(
n− 1− n+ s

n∑
k=1

dk

)
= ω(C ′′)(s‖C ′′‖ − 1)

Example 3.2.7. Consider the following decorated chord diagrams (the decorated chords
are thickened and the decoration is on the other side from the labeling).

C ′ = 1

2

d1

C ′′ = 1

2

d2

Clearly, ν(C ′) = ν(C ′′) = (0, 1) and thus we have

ω(C ′) = d1s− 1 ω(C ′′) = d2s− 1

ω(C ′)ω(C ′′)(s||C ′′|| − 1) = (d1s− 1)(d2s− 1)(s(d2 + 1)− 1)

32

3.3 Leaf labels, diamonds and tree decomposition

The branch-left vectors for the different insertions are:

ν(C ′ ◦1 C ′′) = (0, 1, 0, 2) ν(C ′ ◦2 C ′′) = (0, 1, 1, 1) ν(C ′ ◦3 C ′′) = (0, 1, 0, 2)

Thus, for the the sum of the left hand side of the theorem we have:

ω(C ′ ◦1 C ′′) = ω(C ′ ◦3 C ′′) =

(
d2s

2

)
(d1s− 1)

ω(C ′ ◦2 C ′′) = (d1s− 1)(d2s− 1)(s− 1)

Summing these up, we see that l.h.s is indeed the same as the r.h.s of 3.2.6.

Proof of theorem 3.2.1. : To prove

gcomb
k (x) = gcomb

1 (x) · (sx∂x − 1)gcomb
k−1 (x),

let us do the differential first:

(sx∂x − 1)gcomb
k−1 (x) =

∑
C∈Rdec

b(C)≥k−1

(s||C|| − 1)x||C||ωC âCab(C)−k+1

Multiplying gcomb
1 from the left we obtain:

gcomb
1 (x) · (sx∂x − 1)gcomb

k−1 (x) = ∑
C′∈Rdec

b(C′)≥1

x||C
′||ωC′ âC′ab(C′)−1

 ∑

C′′∈Rdec

b(C′′)≥k−1

(s||C ′′|| − 1)x||C
′′||ωC′′ âC′′ab(C′′)−k+1

 =

∑
C′∈Rdec,C′′∈Rdec

b(C′)≥1,b(C′′)≥k−1

x||C
′||+||C′′||ωC′ωC′′(s||C ′′|| − 1)âC′ab(C′)−1âC′′ab(C′′)−k+1

By Lemma 3.2.2 and Lemma 3.2.6 the result follows.

3.3 Leaf labels, diamonds and tree decomposition

This section explains which leaf labeled binary trees are insertion trees of chord diagrams:
which shape they have and which labeling is allowed. One way to (de-)compose chord
diagrams from smaller ones, that we already know, is given by the insertion operation
resp. root share decomposition. This operation has a direct analogue on the level of
insertion trees: the smallest removable subtree containing one, which will be defined
in 3.3.7. However, there is another way of (de-)composing, which is easy to describe
on the level of trees but, a priori, is not well defined on the insertion tree or chord
diagram level: grafting. Let H1 resp. H2 be two insertion trees of rooted connected

33

3 Proof of the chord diagram expansion

chord diagrams, say D1 resp. D2, then the grafting operation is B+(H1H2), that is the
rooted plane tree given by introducing a new root and connecting H1 to the root on the
left and H2 on the right. It is obvious that this is not a valid insertion tree since some
labels appear twice. However, certain shuffles and a relabeling procedure that will be
descripted in Proposition 3.3.8, yield from every H1 and H2 a set of grafted insertion
trees. Furthermore, to every such shuffle there is a unique grafted insertion tree. This
makes it possible for us to count easily the set of grafted insertion trees and will give
rise to certain equations that we will need later.

Definition 3.3.1 (Leaf label). A leaf labeling for a tree T is a bijective map

σ : Λ(T)→ {1, . . . , |Λ(T)|}.

where Λ(T) denotes the set of leaves of T .

We write (T, σ) for a leaf labeled tree T with leaf labeling σ. Not every leaf labeled
tree (T, σ) is an insertion tree of a rooted chord diagram. For example, consider all
rooted chord diagrams of size 3 and their insertion trees:

1 3

2 2

1 3

1

2 3 1 2

3 .

We see that there is is no rooted connected chord diagram that corresponds to the tree

3 2

1 .

We call a leaf labeling that labels an insertion tree of some rooted chord diagram an
admissible leaf labeling. Theorem 4.8 of [7] tells us which leaf labelings are admissible.

Proposition 3.3.2. Let Tn be the set of rooted, plane, leaf labeled, binary trees with n
leafs such that for every (T, σ) ∈ Tn the following two properties:

P1) At any vertex v that is not a leaf the smallest label in the left subtree of v is smaller
than the label at the end of the fully right branch of the right subtree.

P2) Let H be the smallest removable sub tree of T containing 1 (see Definition 4.6 of
[7] or 3.3.7 for a slightly more general definition). H contains exactly the following
leaf labels:

Im(σ|H) =
{

1, l(T)− l(H) + 2, l(T)− l(H) + 3, . . . , l(T)
}

where l(·) denotes here the maximal label of a tree. H is the left side of the root
share decomposition of trees.

34

3.3 Leaf labels, diamonds and tree decomposition

Furthermore, P1 and P2 must stay true recursively in the following sense. Let T =
H ◦r (T \H) for some r then P1 and P2 must hold for T \H. Then every (T, σ) ∈ Tn
represents a unique rooted connected chord diagram of size n, so

Tn = {T (C) : C ∈ R, |C| = n}

Proof. See [7]

3.3.1 Shuffling the trees of chord diagrams

To get not confused with mixing labels and label shifts in B+(H1H2), we introduce two
copies of the natural numbers N and N: N will hold the label for the left tree and N
will hold the label for the right N at the start of the labeling procedure. In the labeling
procedure elements of N resp. N will be successively replaced by the final label elements
which will be elements of N. Let < resp. < be the strict ordering of N resp. N. To
be clear, < resp. < is not defined to compare an element of N with an element of N
and vice versa. However, there will be the point where we consider elements of N to be
smaller than every element of a specific subset of N ∪ N.

Let’s define the shuffle product for the special case of two subsets {1, . . . k} ⊂
N, {1, . . . , l} ⊂ N:

{1, . . . k}� {1, . . . , l} :=

{
(w1, . . . , wk+l) :

{w1, . . . , wk+l} = {1, . . . k} ∪ {1, . . . , l}
and r < s⇒ wr<ws if wr, ws ∈ N
and r < s⇒ wr<ws if wr, ws ∈ N

}

Example 3.3.3.

{1, 2}� {1, 2} =
{

(1, 2, 1, 2), (1, 1, 2, 2), (1, 1, 2, 2), (1, 1, 2, 2), (1, 1, 2, 2), (1, 2, 1, 2)
}

Definition 3.3.4 (Pre-labeling). Let L ⊂ N ∪ N ∪ N a finite set. We call a bijection

σ′ : Λ(T)→ L

a pre-labeling for T if the image of σ′ contains elements of N or N.

In accordance with Proposition 3.3.2, we need the smallest removable subtree con-
taining 1 in a slightly more general setting. Before doing so, we define what we mean
by removing a subtree from a tree.

Definition 3.3.5 (Removing a subtree). Removing a subtree rooted at a vertex w
S ⊂ T , denoted by T \ S, is defined by the following procedure:

1. Every edge and vertex from S will be removed from T .

2. The edge (w,w′) where w ∈ S and w′ 6∈ S is removed. The edge (w′, w′′) outgoing
from w′ where w′′ 6∈ S is contracted.

35

3 Proof of the chord diagram expansion

Example 3.3.6. Let T =

1 5

2

4

3

and S =
1 5

, then T \ S =

2 4

3

Definition 3.3.7 (Smallest removable subtree). Let (T, σ) be a rooted, plane, leaf la-
beled, binary tree T with a (pre-)labeling σ. A smallest removable subtree S of T is
defined to be the smallest tree such that T \ S maintains P1 of Proposition 3.3.2.

Let k = 1, . . . , |D1| and m := b(D2) the base chord corresponding to D2 = T −1(H2),
1, . . . n ∈ N the pre-labeling forH1 and 1, . . . h ∈ N the pre-labeling forH2. The following
procedure assigns to a shuffle

w = (w1 . . . wk+m) ∈ {1, . . . k}� {1, . . . ,m}

an admissible labeling σ = σ(w) for the grafted tree. Because this tree will be well
defined, we call it H1 �σH2. The set of shuffles {1, . . . k}�{1, . . . ,m} is therefore the set
of admissible shuffles associated to D1, D2 or equivalently to H1, H2 and will be denoted
by D1�D2 resp. H1�H2.

Proposition 3.3.8. Let w be a shuffle of {1, . . . k} and {1, . . . ,m} and (H1, σH1), (H2, σH2)
as before, then the following algorithm produces an admissible label σ and a unique leaf
labeled tree (T, σ) ∈ T :

1. Graft the left and right tree H1 and H2 at a new root, merge the pre-labelings and
call this tree (T1, σ1). To be more specific: T1 = B+(H1H2) and

σ1 : Λ(H1) ∪ Λ(H2)→ {1, . . . , n} ∪ {1, . . . , h}

is given by

σ1(λ) =

{
σH1(λ) if λ ∈ H1

σH2(λ) otherwise

2. For each l = 1, . . . , k+m, replace the prelabel ωl by the label l ∈ N, i.e. modify σ1
such that σ1(wl) = l

3. Assign the label b(D2) + k ∈ N to the fully right branch leaf of T1,i.e. modify σ1
such that

σ1(λ) = b(D2) + k

where λ is the leaf of the fully right branch of T1.

36

3.3 Leaf labels, diamonds and tree decomposition

4. Apply LABEL(T1, σ1, b(D2) + k + 1). The labeling procedure LABEL is defined
as follows:

1 LABEL(T,ref σ,ref l) {
2 if σ is an admissible label {
3 return (T,σ)
4 }
5 s := 0

if Im(σ) ⊂ N ∪ N or Im(σ) ⊂ N ∪ N {
7 // replace the pre -label elements by the next labels l
8 // in the order that is induced by < resp. <
9 if Im(σ) ⊂ N ∪ N {
10 s := |N ∩ Im(σ)|
11 Let {λ1 < . . . < λs} = N ∩ Im(σ)
12 for i = 1 . . . s {
13 replace pre -label λi by l + i
14 }
15 }

if Im(σ) ⊂ N ∪ N {
17 s := |N ∩ Im(σ)|
18 Let {λ1 < . . . < λs} = N ∩ Im(σ)
19 for i = 1 . . . s {
20 replace pre -label λi by l + i
21 }

}
}
// using the extended definition

25 // of smallest removable subtree to get
// the root share decomposition on
// the level of trees
T = T ′ ◦r T ′′

29 LABEL(T ′′,σ,l+s)
30 LABEL(T ′,σ,l+s)
31 }

Note that LABEL does not change the form of T .

Proof. This is basically the corrected version of Lemma 4.12 of [7]. Clearly, different
shuffles give different trees. The rest is labeled by the root share decomposition which
is unique.

The following schematics explain what is going on. Let us start with the trees of

37

3 Proof of the chord diagram expansion

H1 = T (D1) and H2 = T (D2):

b(D2)

T (D1) T (D2)

k labels will be shuffled b(D2)− 1 labels will be shuffled

After assigning the shuffled pre-label to the grafted tree, which are b(D2) − 1 + k, the
next available label will be b(D2) + k which is b(C)

T (C)

b(C) = b(D2) + k

Now, we have a label one assigned to our tree, which makes it possible to look at the
smallest removable sub tree containing one. We can now make the root share decom-
position on trees recursively until the pre label elements of N ∪ N are on the left side
of the root share decomposition and pre label elements of N ∪ N are on the ride side.
If that is case, the pre labels will be replaced by their induced label given by the root
share decomposition.

Example 3.3.9. Let us look at the following trees T (D1) and T (D2). We already re-
placed the labeling by the pre labeling, since this is nothing more than drawing underlines
resp. overlines to the labels:

T (D1) = 2

1 3

and T (D2) =

1 5

2

4

3

We realize immediatly that b(D2) = 3. Now let us restrict to the k = 1 case. We need
to shuffle the first k = 1 pre labels of T (D1) and the first b(D2)− 1 labels of T (D2), so

38

3.3 Leaf labels, diamonds and tree decomposition

that will be:

{1}� {1, 2} = {(1, 1, 2), (1, 1, 2), (1, 2, 1)}

Let’s see how to construct the tree corresponding to the shuffle (1, 1, 2). First let us
assign in the tree the labels that we already know (by the steps 2 and 3 of Prop 3.3.8):

1 ≡ 1, 1 ≡ 2, 2 ≡ 3 and 3 ≡ b(D2) + k = 4

and we get:

2

2 3

1 5

3

4

4

So the smallest removable subtree containing one is
1 5

. Since the smallest removable

subtree containing one is always on the left side of the root share decomposition, we
know that 5 gets the largest label, i.e. 5 ≡ 8. On the right side of the root share
decomposition we have to look at what is the smallest removable subtree containing two
(we would not allow the smallest label of a tree to be two, but we are working with
the induced labeling which makes it easier to calculate and not to get confused). The
smallest removable subtree containing two is then:

2

2 3

We see that this root share decomposition splits elements of N and N, so we can resolve:
2 ≡ 6, 3 ≡ 7, 4 ≡ 5. So the final tree is:

6

2 7

1 8

3

5

4
which corresponds to:

1

2

3
67

4

5

8

39

3 Proof of the chord diagram expansion

where

D1 =
1

23
and D2 =

1

2

34

5

3.4 Bridge equation

As mentioned previously, the root share decomposition is not the only way to decompose
chord diagrams into smaller ones. When starting with a tree T (C) associated to a chord
diagram, by removing the root we obtain a left and a right tree that define chord diagrams
by themselves. Let us call those chord diagrams D1 and D2, They are well defined for
every chord diagram C and so we are able to define the diamond operation on chord
diagrams. This operation, which will be defined in detail in 3.4.1, is needed for some
technical lemmas that we need to prove the main theorem. It roughly says that summing
over a set of chord diagrams of fixed size n is the same as summing over all possible
decompositions of C into D1, D2. To be more specific we will need to prove:

∑
||C||=i+1
b(C)=j+1

ωĈ âC =
i∑

k=1

j∑
l=1

(
j

l

) ∑
||D1||=k
b(D1)≥l

ωD1 âD1
ab(D1)−l

 ∑
||D2||=i−k+1
b(D2)=j−l+1

ωD̂2
âD2

 (3.4.1)

The proof relies crucially on the Proposition 3.3.8, which tells us in how many ways
two given trees can be grafted together.
If we decompose trees or chord diagrams by their left and right subtree, this is a well

defined operation. However, if we start with two trees it is not clear which labeling
the diamond operation should put out and Proposition 3.3.8 tells us what labelings are
possible for it. This being said, we define the diamond operation in the following way

Definition 3.4.1 (Diamond operation on trees and chord diagrams). Let T1, T2 ∈ T (R),
λ be a leaf labeling of size l(T1) + l(T2) where l(·) denotes the numbers of leafs, then we
define T1 �λ T2 to be the unique tree that has T1 as left tree, T2 as right tree and λ as
leaf labeling. If we take the induced labeling of a tree T , we write T1 �T T2. Analogously,
we write for chord diagrams D1, D2 and a chord labeling µ of size |D1|+ |D2| D1 �µ D2

and for the induced labeling of a chord diagram C, we write D1 �C D2. If no labeling is
assigned, i.e. T1 � T2 resp. D1 �D2 is defined to be the set of all possible labelings.

Example 3.4.2. Consider C =

1

(4) ◦k
(2)

(3) Then depending on k we have

the following C and C = D1 �C D2

40

3.4 Bridge equation

k 1 2 3

C 4

1 2
3 1

2

3
4

1 2

3
4

T = H1 �T H2
1 4 2 3

1 4

2

3 2

1 4

3

H1
1 4 1 4

2
2

H2
2 3

3
1 4

3

D1

1

2

1

2

3

1

D2

1

2

1 1

2

3

The diamond operation is compatible with the root share decomposition, however, it
is not always combatible the same way. It depends on the insertion place of the root
share decomposition as stated below:

Proposition 3.4.3. Let C be a chord diagram with |C| ≥ 3 and C = C ′ ◦k C2 where
C2 = C ′′ �C2 C

′′′, then

C ′ ◦k (C ′′ �C2 C
′′′) =

(C ′ ◦k−1 C ′′) �C C ′′′ |C ′′| ≤ k − 1, k > 1

C ′ �C (C ′′ �C C ′′′) k = 1

C ′′ �C (C ′ ◦k−|C′′|−1 C ′′′) else

Proof. Let |C| ≥ 3 with C = C ′ ◦k C2 then there are three cases to consider if we look
at T = T (C):

1. k is the root of T : This is the case k = 1 and so root share decomposition and
diamond decomposition coincidence.

2. k lies in the left subtree of T : Let T (D1) be the left subtree of T and D′1 the
diagram coresponding chord diagram to left subtree of T (D1), then

D1 = C ′ ◦k−1 D′1

3. k lies in the right subtree of T : Let T (D2) be the right subtree of T and D′2 the

41

3 Proof of the chord diagram expansion

diagram coresponding chord diagram to left subtree of T (D2), then

D2 = C ′ ◦k−1−|D1| D
′
2

Actually, there is a “triangle inequality” for base chords, which is Lemma 4.10 in
[7] and which we will show by using the former “associativity law”. It is required for
Proposition 3.4.8.

Lemma 3.4.4 (Triangle inequality for the base chords).

b(D1 �D2) ≤ b(D1) + b(D2)

Proof. Induction on number of chords of D1 � D2: Induction start is trivial. So there
are three different cases to consider:

1. D1 �D2 = (D′1 ◦k−1 D′′1) �D2 = D′1 ◦k (D′′1 �D2) for some k:

b(D1 �D2) = b(D′′1 �D2) + 1

≤ b(D′′1) + b(D2) + 1

= b(D1)− 1 + b(D2) + 1

2. b(D1 �D2) = b(D1 ◦1 D2) = b(D2) + 1 ≤ b(D2) + b(D1)

3. D1 � (D′2 ◦k−|D′2|−1 D
′′
2) = D′2 ◦k (D1 �D′′2):

b(D1 �D2) = b(D1 �D′′2)

≤ b(D1) + b(D2)− 1 < b(D1) + b(D2)

The terminal sets are under control for ◦k but we don’t know what they do for �. The
branch-left vectors are under control for � (let C = D1 �D2, then the only component
that is increased is the base chord of D2) but we know only partial results on ◦k. To
prove the equation 3.4.1 we need the following Lemma which uses the last lemma and
compares the diamond and insertion operation. It uses the same principle as we needed
in the proof of the triangle inequality: three cases depending on the insertion place.

Lemma 3.4.5. Let C ∈ R with |C| ≥ 2 and T,H1, H2, D1, D2 as before. Let d = db(D1)

be the decoration of the smallest terminal set of D1, then

ωĈ âC = ωD1ωD̂2
âD1

âD2
ad,b(D1)+b(D2)−b(C)

Proof. The Lemma follows from the following two claims:

42

3.4 Bridge equation

Claim 1: ωĈ = ωD1ωD̂2
. Remember that ωĈ =

∏
k 6=b(C)

(
sdk+νk−2

νk

)
and notice that in the

induced labeling the base chord ofD2 and C are the same, so we have b(D2) = b(C)
because it is the fully right branch leaf of the tree that correspond to D2 as well
that of C.

Claim 2: âC = âD1
âD2

ad,b(D1)+b(D2)−b(C). This claim can be proved analogously to 4.11 out of
[7]. For the sake of completeness we carry it out: The main point to study here is
to compare the root share decomposition C = C1◦kC2 with the tree decomposition
C = D1 �D2. There are three cases to investigate:

a) k = 1: We note that

db(C) = db(D2) = db(C2) and b(C2) = b(D2) = b(C)− 1

because Root share decomposition and tree decomposition coincidence. This
being said, we can use directly Lemma 3.2.2 now:

âCadb(D2)
,b(D2)−l+1 = âD1

adb(D1)
,b(D1)−1âD2

adb(D2)
,b(D2)−l+1

= âD1
adb(D1)

,b(D1)+b(D2)−b(C)âD2
adb(D2)

,b(D2)−l+1

b) k is an edge in the left tree T (D1) = H1: First, by induction the statement
holds for C2. Thus let D′1, D′2 the chord diagrams corresponding to the left
and the right tree of T2 = T (C2), then

âC2
= âD′1 âD′2ad(b(C)),b(D′1)+b(D

′
2)−b(C2) (3.4.2)

Second, apply Lemma 3.2.2 on D1 = C1 ◦k−1 D′1 with l = k to obtain

âD1
ad(b(D1)),b(D1)−(k−1) = âC1

ad(b(C1)),b(C1)−1âD′1ad(b(D
′
1)),b(D

′
1)−k+2 (3.4.3)

And we have by applying Lemma 3.2.2 on C = C1 ◦k C2:

âCad(b(C)),b(C)−(k−1) = âC1
ad(b(C1)),b(C1)−1âC2

ad(b(C2)),b(C2)−k+1

3.4.3
=

âD1
ad(b(D1)),b(D1)−(k−1)

âD′1ad(b(D
′
1)),b(D

′
1)−k+2

âC2
ad(b(C2)),b(C2)−k+1

3.4.2
=

âD1
ad(b(D1)),b(D1)−(k−1)

âD′1ad(b(D
′
1)),b(D

′
1)−k+2

× âD′1 âD′2ad(b(C)),b(D′1)+b(D
′
2)−b(C2)ad(b(C2)),b(C2)−k+1

The result follows with b(C) = b(C2) + 1 and b(D1) = b(D′1) + 1 and because
D′2 = D2 remains unchanged.

c) k is an edge in the right tree T (D2) = H2: Then D2 = C1 ◦k−1−|D1| D
′
2 and

43

3 Proof of the chord diagram expansion

the calculation works analogously as the last case and the results follows with
the help of b(C) = b(C2) + 1 and b(D2) = b(D′2) + 1.

Example 3.4.6. Consider the following chord diagram with arbitrary decorations
d1, . . . , d4 and arbitrary s 6= 1:

C =

d1 d2

d3

d4

It has terminals ter(C) = {3, 4}, so b(C) = 3. The corresponding tree is

T (C) =
2

1 4

3

so all in all we have for the left hand side of the previous lemma:

ωĈ âC = (d4s− 1)ad4,1ad1,0ad2,0

For the right hand side we have the following trees and diagrams (the decoration is
inherited but the labeling is normalized):

D1 =

1, d2

D2 =

1, d1

2, d3

3, d4

H1 =
1

H2 =
1 3

2

So we have for the right hand side:

âD1
= 1

âD2
= ad4,1ad1,0

ωD1 = 1

ωD̂2
= d4s− 1

ad(b(D1)),b(D1)+b(D2)−b(C) = ad2,0

multiplying this we indeed get the same as the left hand side as stated by the Lemma.

44

3.4 Bridge equation

Proposition 3.4.7. We first have the following observation for j ∈ Z≥0 and every k ∈ N∑
||C||=i+1
dj+1=1
νj+1=n
b(C)=j+1

âCωĈ =
∑

||C||=i+k
dj+1=k
νj+1=n
b(C)=j+1

âCωĈ

Proof. Let

Ci,j,k :=
{
C ∈ Rdec : ||C|| = i+ k, dj+1 = k, νj+1 = n, b(C) = j + 1

}
We need to show that

Ai,j := {âCωĈ : C ∈ Ci,j,1} is bijective to every Ai,j,k := {âCωĈ : C ∈ Ci,j,k}

For a fixed k the map that replaces the decoration dj+1 = 1 by k clearly defines a
bijection between Ci,j,1 and Ci,j,k. This map lifts to a bijection Ai,j ↔ Ai,j,k because the
decoration dj+1 is ignored by definition of âC and ωĈ , since b(C) = j + 1.

Proposition 3.4.8 (Decorated version of Prop 4.3 from [7]).

∑
||C||=i+1
b(C)=j+1

ωĈ âC =
i∑

k=1

j∑
l=1

(
j

l

) ∑
||D1||=k
b(D1)≥l

ωD1 âD1
ab(D1)−l

 ∑
||D2||=i−k+1
b(D2)=j−l+1

ωD̂2
âD2

Proof. We know that each chord diagram C of size i + 1 can be tree decomposed to
C = D1 � D2 and that in this case b(D1) + b(D2) ≥ b(C) by the triangle inequality
3.4.4. However, given b(D1) ≥ l for fixed l and b(D2) = j − l + 1 for fixed j results in(
j
l

)
possibilites for D1, D2 such that C = D1 � D2 by Proposition 3.3.8. Furthermore

b(C) = j + 1. Therefore the sum on the left hand side of the statement splits like:

∑
||C||=i+1
b(C)=j+1

=
i∑

k=1

j∑
l=1

(
j

l

) ∑
||D1||=k
b(D1)≥l

 ∑
||D2||=i−k+1
b(D2)=j−l+1

Now given a monomial ωĈ âC we know how to decompose it into the monomials as needed
by Lemma 3.4.5. Inserting them into the sums proves the proposition.

Example 3.4.9. Let i = 3, j = 1 and N ≥ 3 and s ∈ Z≥2 arbitrary. We have to consider
all chord diagrams with ||C|| = 4, b(C) = 2. For the decorations we need to consider all
compositions of four:

(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2), (1, 3), (3, 1)

45

3 Proof of the chord diagram expansion

Because of the constraint b(C) = 2 all chord diagrams to consider are

R{2,3,4},R{2,4},R{2,3},R{2}

For R{2,3,4} and R{2,4} only the decoration d1 = d2 = d3 = d4 = 1 is possible so we
calculate these: We have one chord diagram with ter = {2, 3, 4} and branch left vector
(0, 1, 1, 1):

âC = a21a0 and ωĈ = (s− 1)2

There are three chord diagrams with ter = {2, 4}, namely the two chord diagrams with
branch left vector (0, 1, 0, 2):

âC = a2a
2
0 and ωĈ =

(
s

2

)
and the one with branch left vector (0, 1, 1, 1):

âC = a2a
2
0 and ωĈ = (s− 1)2

Summing this up R{2,3,4} and R{2,4} contribute to the left hand side with:

(s− 1)2a21a0 + a2a
2
0

(
2

(
s

2

)
+ (s− 1)2

)
= (s− 1)2a21a0 + (2s2 − 3s+ 1)a2a

2
0

R{2,3} consists only of one chord diagram with branch left vector (0, 1, 1) and we have
to consider the decorations: (d1, d2, d3) ∈ {(2, 1, 1), (1, 2, 1), (1, 1, 2)}, so it contributes
on the left hand side with:

((2s− 1) + 2(s− 1)) a0a1 = (4s− 3)a0a1

R{2} has only one chord diagram which contributes to left hand side by 3a0. The weight
is 1 because the branch left vector of the chord diagram is (0, 1) where the second
coordinate is ignored by ωĈ , but there are three chord diagrams to consider, namely
that are decorated by (1, 3), (3, 1), (2, 2). So the left hand side of last lemma is for this
example:

(s− 1)2a21a0 + (2s2 − 3s+ 1)a2a
2
0 + (4s− 3)a0a1 + 3a0

For the RHS we need to take the induced labels of D1 and D2 and we have to consider
only the last sum:

RHS =

 ∑
||D1||=1
b(D1)≥1

ωD1 âD1
ab(D1)−1

 ·
 ∑
||D2||=3
b(D2)=1

ωD̂2
âD2

46

3.4 Bridge equation

+

 ∑
||D1||=2
b(D1)≥1

ωD1 âD1
ab(D1)−1

 ·
 ∑
||D2||=2
b(D2)=1

ωD̂2
âD2

+

 ∑
||D1||=3
b(D1)≥1

ωD1 âD1
ab(D1)−1

 ·
 ∑
||D2||=1
b(D2)=1

ωD̂2
âD2

Since N ∈ N≥3, we have∑
||D2||=3
b(D2)=1

ωD̂2
âD2

=
∑
||D2||=2
b(D2)=1

ωD̂2
âD2

=
∑
||D2||=1
b(D2)=1

ωD̂2
âD2

= 1

∑
||D1||=1
b(D1)≥1

ωD1 âD1
ab(D1)−1· = a0

∑
||D1||=2
b(D1)≥1

ωD1 âD1
ab(D1)−1 = (s− 1)a0a1 + a0

∑
||D1||=3
b(D1)≥1

ωD1 âD1
ab(D1)−1 = (s− 1)2a0a

2
1 + (2s3 − 3s+ 1)a20a2 + ((s− 1) + (2s− 1)) a0a1 + a0

Summing this up, we get indeed the left hand side.

Proposition 3.4.10 (Restricted decorated Prop 4.3).

∑
||C||=i+1
b(C)=j+1
νb(C)=n

ωĈ âC =
i∑

k=1

j∑
l=1

(
j

l

) ∑
||D1||=k
b(D1)≥l

ωD1 âD1
ab(D1)−l

∑
||D2||=i−k+1
b(D2)=j−l+1
νb(D2)

=n−1

ωD̂2
âD2

Proof. Note that νb(D1�D2)(D1 �D2) = νb(D2)(D2) + 1. Indeed, b(D1 �D2) = b(D2) and
attaching a tree on the left side of T (D2) increments the right most branch, which ends
at the leaf b(D2). Therefore the length of the rightmost branch matches as given in the
proposition. The rest follows by Proposition 3.4.8

In the following we develop equations that builds a bridge between the sum that
contains only chord diagrams and the sum that is calculated by derivations. Therefore,
we will call it the Bridge equation. It is proved by induction and the following lemma

47

3 Proof of the chord diagram expansion

makes the start for the induction whereas the lemma after it states the general case.

Lemma 3.4.11. Let i ≥ 1, j ≥ 1, then

∑
||C||=i+1
dj+1=1
νj+1=1
b(C)=j+1

âCωĈ = [xi]

(∑
l≥1

gcomb
l (x)

l!
∂lρ=0

)
ρj

Proof. Because the right hand side of the equation has only one non-zero term, namely
the term where l = j, therefore it suffices to prove∑

||C||=i+1
dj+1=1
νj+1=1
b(C)=j+1

âCωĈ =
∑
||D||=i
b(D)≥j

ωDâDad(b(D)),b(D)−j (3.4.4)

We know that for C = D � D2 with D2 being the chord diagram with only one chord
diagram. Therefore we have the triangle inequality for the label of the base chords
hold: b(D) ≥ b(C) − b(D2). We note that there indeed exists only one C with this
diamond decomposition and b(C) = j + 1, because there is only one shuffle which ends
with the integer j + 1. Now, on the sum of the LHS every chord diagram splits into
D �D2 with D2 being the chord diagram with only one chord. But D now has the size
||D|| = ||C|| − dj+1 = i and its base chord satisfies b(D) ≥ j + 1− 1 = j. Thus it is left
to see that the corresponding summands are actually equal on both sides of Eq. 3.4.4.
But this was already done in Lemma 3.4.5

Now, we can use it to prove the statement that we were looking for:

Lemma 3.4.12 (“Bridge equation”). Let n ≥ 1, then

∑
||C||=i+1
dj+1=1
νj+1=n
b(C)=j+1

âCωĈ = [xi]

(∑
l≥1

gcomb
l (x)

l!
∂lρ=0

)n

ρj

Proof. For better readability define: G∂ρ(x) :=
∑

l≥1
gcomb
l (x)

l!
∂lρ=0 and Fi,j,n := [xi]Gn

∂ρ(x)ρj.
Let i, j be fixed, we prove the statement by induction over n. For n = 1 the statement
is true by the previous Lemma. Now analogously to the proof of Lemma 4.14 in [7], we

48

3.4 Bridge equation

observe that:

Fi,j,n = [xi]Gn
∂ρ(x)ρj

=
i∑

k=1

(
[xk]G∂ρ(x)

) (
[xi−k]Gn−1

∂ρ (x)
)
ρj

Leibniz-Rule
=

i∑
k=1

j∑
l=1

(
j

l

)(
[xk]G∂ρ(x)ρl

) (
[xi−k]Gn−1

∂ρ ρj−l
)

Definition
=

i∑
k=1

j∑
l=1

(
j

l

)
[xk]gcomb

l (x) · Fi−k,j−l,n−1

induction
=

i∑
k=1

j∑
l=1

(
j

l

) ∑
||D1||=k
b(D1)≥l

ωD1 âD1
ab(D1)−l

∑
||D2||=i−k+1
b(D2)=j−l+1
νb(D2)

=n−1

ωD̂2
âD2

Prop 3.4.10

=
∑

||C||=i+1
dj+1=1
νj+1=n

âCωĈ

Theorem 3.4.13. Let Gcomb
∂ρ :=

∑
l≥1

gcomb
l

l!
and F̃k(ρ) :=

∑
l≥0 ak,lρ

l,then

gcomb
1 =

N∑
k=1

xk
∑
n≥0

(
n+ sk − 2

n

)
(Gcomb

∂ρ)nF̃k(ρ)

Proof. For the first coefficient of the right hand side of the equation that we want to
show, we have:

[xi]RHS =
N∑
k=1

∑
n≥0

(
n+ sk − 2

n

)∑
l≥0

ak,l[x
i−k](Gcomb

∂ρ)nρl

Now, we can use the “Bridge Equation” and 3.4.7:∑
||C||=i+k
dl+1=k
νl+1=n
b(C)=l+1

âCωĈ = [xi](Gcomb
∂ρ)nρl for all k = 1 . . . N.

49

3 Proof of the chord diagram expansion

And we get:

[xi]RHS =
N∑
k=1

∑
n≥0

(
n+ sk − 2

n

)∑
l≥0

ak,l
∑
||C||=i
dl+1=k
νl+1=n
b(C)=l+1

âCωĈ

=
N∑
k=1

∑
n≥0

∑
l≥0

ak,l
∑
||C||=i
dl+1=k
νl+1=n
b(C)=l+1

âCωĈ

(
νl+1 + sk − 2

νl+1

)

=
N∑
k=1

∑
n≥0

∑
l≥0

∑
||C||=i
db(C)=k
νb(C)=n

b(C)=l+1

ak,b(C)−1âCωĈ

(
νl+1 + sk − 2

νl+1

)

Since we have l = b(C) + 1, we realize that

ωĈ

(
νl+1 + sk − 2

νl+1

)
= ωC

We look carefully at the restrictions of the last sum. We need to verify that we can drop
the last three constraints because we are summing over all possible k, n, l:

1. The restriction db(C) = k drops because we are summing over all k = 1 . . . N .

2. The restriction of Rdec to ||C|| = i, νb(C) = n is always non-empty for some n and
summing over all n yields indeed all rooted connected decorated chord diagrams
with ||C|| = i.

3. b(C) ≥ 1 so we can drop b(C) = l + 1 and
∑

l

In conclusion:

[xi]RHS =
∑
||C||=i

ωC âCad(b(C)),b(C)−1 = gcomb
1

Theorem 3.1.2 1. Since the Renormalization Group equation holds true for both gcomb

(by Theorem 3.2.1) and gdif (by Theorem 4.2 of [16]) , Gdif/comb are build from g
dif/com
1

completely in the same way:

g
dif/comb
k = g

dif/comb
1 (sx∂x − 1)g

dif/comb
k−1 for k ≥ 2

50

3.4 Bridge equation

For gdif1 we have by applying the generalized geometric series to Gdif (x, ∂−ρ)
1−sk:

gdif1 =
N∑
k=1

xk
∑
n≥0

(
n+ sk − 2

n

)
(Gdif

∂ρ)
nF̃k(ρ)

where, as mentioned in the introduction, F̃k(ρ) = (e−Lρ − 1)1
ρ

∑
l≥0 ak,lρ

l. The last
theorem 3.4.13 helps us to show equality of gcomb

1 = gdif1 :

gcomb
1 (x)− gdif1 (x) =

N∑
k=1

xk
∑
n≥0

(
n+ sk − 2

n

)(
(Gcomb

∂ρ)n − (Gdif
∂ρ)

n
)
F̃k(ρ)

This is Theorem 3.4.13 for gcomb and is the Dyson-Schwinger equation itself for gdif1 .
The first coefficient of gcomb

1 and gdif1 are the same, then applying the renormalization
group equation resolved the bigger gk to g1 and for a fixed g1,k we can use the smaller
g1,k−l to determine the equality recursively. Hence

gcomb
1 (x)− gdif1 (x) = 0

51

4 Beyond the chord diagram
expansion

4.1 Using the chord-db and hunt for new numbers

There are a lot of new unknown number sequences hidden in rooted chord diagrams
by ordering the terminal chords lexicographically and using the embedding that we
discussed in 2.3.7 to build a direct limit. Here is a list of sequences:

1. Count the number of chord diagrams with given terminal set:

1, 3, 8, 15, 15, 30, 71, 105, 24, 51, 117, 180, 206, 315, 744, 945

2. The number of chord diagrams having branch left vectors of form (0, 1, 1, . . . , 1)

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 4, 1, 5, 4, 7, 3, 9, 5, 7, 2, 10, 6, 9, 3, 10, 4, 5, 1

which is closely related to the sequence OEIS: A002487:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1

Counting some chord diagrams and hunting for conjectures with chord-db:
sqlite> select count(*) from rccds where size=5 and branchv like "_ _ _ _ 4";
24
sqlite> select count(*) from rccds where size=5 and dvector like "%4";
24
sqlite> select count(*) from rccds where terminal="3 4 5" and dvector like "%3";
0
sqlite> select count(*) from rccds where terminal="3 4 5" and dvector like "%2";
2
sqlite> select count(*) from rccds where terminal="3 4 5" and branchv like "%2";
2

4.2 A canonical example

Let us consider C := CWn(β1, . . . , βn) as defined already in [7]. For the sake of com-
pletness, we recall the definition:

Definition 4.2.1 (Cycloids, CWn(β1, . . . , βn). A chord diagram where a chord i crosses
only the chord i + 1 is called a cycloid. Let β1, . . . , βn non zero, then CWn(β1, . . . , βn
is defined to be the wheel with n spokes and to the k-th chord of the wheel there is a
cycloid of size βk attached.

53

4 Beyond the chord diagram expansion

This is a big set of chord diagrams where we have good combinatorial control and all
things we need can be calculated easily:

|C| = n+
n∑
k=1

βk (4.2.1)

ter(C) = {n+ βn, n+ βn + βn−1, . . . , n+
n∑
k=1

βk} (4.2.2)

b(C) = n+ βn (4.2.3)

aδ(C,k) = an+βn−kaβn−1 · · · aβ1a
∑n

k=1 βk
0 (4.2.4)

The root share decomposition is:

C = CW1(β1) ◦n−1 CWn−1(β2, . . . , βn) (4.2.5)

And the only components of the corresponding branch left vector ν(C) that are non-zero
are:

νn+βn+...+βn−N
(C) =

{
βn−N + 1 N < n− 1

β1 N = n− 1
where 0 < N ≤ n− 1

Note that if we allow βs to be zero, then the latter equation is wrong, however the for-
mulas 4.2.1 - 4.2.5 still hold true. However, if we allow βs to be zero, the representation
is not unique: CW2(0, 0) = CW1(1).

4.3 Nice structures in the generic mixed case

Lets consider the case, where s = 2, N = 2 which we call the generic mixed case.
Then we have a lattice Sudoku game: Take a monomial from γ1,n that contains only
unknowns ak := a1,k from the first Mellin transform series. Let bk := a2,k then applying
the transformation a0an 7→ bn−1 continuously as long as it is possible yields monomials
of γ1,n if we forget for a moment the integer coefficients. However, there is a connection
between the coefficients. Take for example the case g14 and the monomial a1a2a20, we
could draw the corresponding monomials in a lattice:

Example 4.3.1. when s = 2:

11a1a2a
2
0

8b0a2a0 6b1a1a0

3b0b1

note that: 11− (8 + 6) + 3 = 0

54

4.3 Nice structures in the generic mixed case

For s = 3 for the same monomial we have:

72a1a2a
2
0

26b0a2a0 20b1a1a0

5b0b1

note that: 72− 2(26 + 20) + 4 · 5 = 0

And indeed we have: ∑
n

(−1)n(s− 1)nLn = 0

where n sums over the n-th height level of the lattice. Note to prove this statement, we
could not just modify the second mellin transform series

F2(ρ) =
1

ρ

∑
k≥0

aoak+1ρ
k

, because it depends on the height level of the lattice how many transforms are applied.
Since this observation is hard to prove, we start with a bit coarser statement:

Let us look at the following summands γ[m]
1,n out of the anomalous dimension γ1:

γ
[m]
1,n :=

∑
||C||=n,||C||2=m

ωC

then for arbitrary s ∈ Z≥2: ∑
m≥0

(−1)m(s− 1)mγ
[m]
1,n = 0

where ||C||2 = m denotes that the occurence of the decoration 2 appears exactly m
times in C. For a small γ1,n this relation is easy to proof, by just subtracting polynomials:

γ
[0]
1,4 = 5(s− 1)3 + 16

(
s

2

)
(s− 1) + 6

(
s+ 1

3

)
γ
[1]
1,4 = 2(2s− 1) (s+ 3(s− 1))

γ
[2]
1,4 = 2s− 1

So the first polynomials that we can actually calculate are

γ
[0]
1,1 = 1

γ
[0]
1,2 = s− 1

55

4 Beyond the chord diagram expansion

γ
[0]
1,3 = 3s2 − 5s+ 2

γ
[0]
1,4 = 14s3 − 31s2 + 22s− 5

γ
[0]
1,5 = 84s4 − 231s3 + 224s2 − 91s+ 14

γ
[0]
1,6 = 620s5 − 1946s4 + 2340s3 − 1364s2 + 392s− 42

γ
[0]
1,7 = 5236s6 − 18422s5 + 26158s4 − 19196s3 + 7678s2 − 1586s+ 132

γ
[0]
1,8 = 49680s7 − 192660s6 + 310792s5 − 270545s4 + 137292s3 − 40606s2 + 6476s− 429

γ
[0]
1,9 = 21721s8 − 2195721s7 + 3931179s6 − 3914509s5 + 2372483s4 − 896309s3

+ 206059s2 − 26333s+ 1430

γ
[0]]
1,10 = 5994155 s9 − 27052801 s8 + 52846049 s7 − 58712131 s6 + 40916811 s5

− 18557169 s4 + 5477263 s3 − 1014077 s2 + 106762 s− 4862

γ
[1]
1,4 = 16 s2 − 20 s+ 6

γ
[1]
1,5 = 110 s3 − 194 s2 + 110 s− 20

γ
[1]
1,6 = 894 s4 − 1990 s3 + 1608 s2 − 558 s+ 70

γ
[1]
1,7 = 8253 s5 − 21846 s4 + 22459 s3 − 11196 s2 + 2702 s− 252

γ
[1]
1,8 = 84616 s6 − 256642 s5 + 315712 s4 − 201490 s3 + 70288 s2 − 12688 s+ 924

γ
[1]
1,9 = 949950 s7 − 3218522 s6 + 4558890 s5 − 3498530 s4 + 1569996 s3

− 411596 s2 + 58284 s− 3432

γ
[1]
1,10 = 11565150 s8 − 42970140 s7 + 68258512 s6 − 60550398 s5 + 32799176 s4

− 11103316 s3 + 2291796 s2 − 263330 s+ 12870

γ
[2]
1,4 = 2s− 1

γ
[2]
1,5 = 25 s2 − 25 s+ 6

γ
[2]
1,6 = 285 s3 − 419 s2 + 198 s− 30

γ
[2]
1,7 = 3318 s4 − 6324 s3 + 4378 s2 − 1302 s+ 140

γ
[2]
1,8 = 40464 s5 − 93444 s4 + 83912 s3 − 36570 s2 + 7720 s+ 630

γ
[3]
1,6 = 12 s2 − 10 s+ 2

γ
[3]
1,7 = 301 s3 − 380 s2 + 154 s− 20

γ
[3]
1,8 = 5640 s4 − 9426 s3 + 5716 s2 − 1488 s+ 140

56

4.4 Anomalous Dimension and Catalan like numbers

and last but not least:

γ
[4]
1,8 = 112 s3 − 124 s2 + 44 s− 5

We guess immediately that the constant coefficients of γ[0]]1,n are the Catalan numbers
modulo sign. Also there are other number sequences related to the constant coefficients
of γ[1]1,n, γ

[2]
1,n, γ

[3]
1,n but because lack of data, we can not identify them uniquely.

And with the data given above, we can check that indeed:

γ
[0]
1,8 − (s− 1)γ

[1]
1,8 + (s− 1)2γ

[2]
1,8 − (s− 1)3γ

[3]
1,8 + (s− 1)4γ

[4]
1,8 = 0

Nevertheless, the non-constant coefficients of the polynomials γ[l]1,k are hard to guess.
Since the

4.4 Anomalous Dimension and Catalan like numbers

The following chapter is the first try to connect the theory of analytic Dyson-Schwinger
equations with the theory of moment problems. We only take the Hamburger moment
into study, however, there are many more. For a first introductionary peek a good start
might be the english Wikipedia pages . The Hamburger moment problem is stated as
follows:

Definition 4.4.1. Given a sequence of real numbers (an)n∈Z≥0
is said to solve the Ham-

burger moment problem if there exist a positive Borel measure µ:

an =

∫ ∞
−∞

xndµ(x)

The beauty of some moment problems is that there is a characterization by positive
definitness of an operator that can be directly constructed by (an)n∈Z≥0

. In the case of
the Hamburger moment problem we have the following theorem

Theorem 4.4.2. (an) solve the Hamburger moment problem iff the following Hankel
matrices H(n) are positive definite:

H
(n)
k,l = (ak+l−2)k+l−2≤n ∈ R(n+1)×(n+1)

i.e.

H(0) = (a0), H
(1) =

(
a0 a1
a1 a2

)
, H(2) =

a0 a1 a2
a1 a2 a3
a2 a3 a4

 , . . . have there determinants positive.

Furthermore, for (an) that solves the Hamburger Moment Problem there exists a unique

57

4 Beyond the chord diagram expansion

positive Borel measure µ iff there are constants C,D such that for all

|an| ≤ CDnn!

Proof. See [9]. There the uniqueness proof use analytic vector techniques. There is a
mistake in the proof, which is fixed in [10] (which was communicated to the author by
Dr. Batu Güneysu).

Example 4.4.3. The Catalan numbers are the unique number sequence (Cn)n that is
defined by

det(Ck+l−2)k+l−2≤n = 1 and det(Ck+l−1)k+l−1≤n = 1

The moment representation is:

Cn =
1

2π

∫ 4

0

dx xn ·
√

4− x
x

See wikipedia ([15]) for further references.

Inspired by the last example and similar relations on the determinants of the Hankel
matrices of the Motzkin, Aigner defined the Catalan-like numbers.
In this section we want to develop a connection between the anomalous dimension γ1

of the root chord diagram expansion to the Catalan-like numbers defined in [1]. What
Catalan-like numbers of type (a, s) are will be given later, before we want to explain the
setting a little bit more carefully and so give a summary of Aigners article.

Definition 4.4.4 (Admissible matrix). An admissible matrix is an infinite lower trian-
gular matrix, where the diagional contains only ones. and for all entries:∑

am,kan,k = am+n,0

The numbers an,0 are called the Catalan-like numbers for the matrix A.

Lemma 4.4.5. 1. An admissible matrix A = (an,k is uniquely determined by the
sequence (an+1,n), on the other hand to every sequence (bn)n of real numbers there
exist an admissible matrix (an+1,n) = bn.

2. Let an+1,n = bn and define s0 = b0, sn = bn − bn−1, then we have

an,k = an−1,k−1 + skan−1,k + an−1,k+1 for n ≥ 1

a0,0 = 1, a0,k = 0 for k > 0

If an,k satisfies the latter recursion, then an,k describes an admissible matrix with
an+1,n = s0 + . . .+ sn

If σ = (sn) then the admissible matrix described before yield the catalan like numbers
of type σ.

58

4.4 Anomalous Dimension and Catalan like numbers

Example 4.4.6. The Catalan numbers equal the Catalan-like numbers of type
(1, 2, 2, . . .)

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 3 1 0 0 0 0 0 0 0
5 9 5 1 0 0 0 0 0 0
14 28 20 7 1 0 0 0 0 0
42 90 75 35 9 1 0 0 0 0
132 297 275 154 54 11 1 0 0 0
429 1001 1001 637 273 77 13 1 0 0
1430 3432 3640 2548 1260 440 104 15 1 0
4862 11934 13260 9996 5508 2244 663 135 17 1
...

...
...

...
...

...
...

...
...

...

We hope that some of the column describe coefficients of the s-polynomials that we

investigated in the DSE-Sudoku game.

Definition 4.4.7 (Catalan like numbers of type (a, s)). The Catalan-like numbers of
type (a, s) that are the Catalan-like numbers of type (a, s, s, s, . . .) are have the gener-
ating function:

Ca,s(x) =
1− (2a− s)x−

√
1− 2sx+ (s2 − 4)x2

2(s− a)x+ 2(a2 − as+ 1)x2

The question is which Mellin transform gives Catalan-like number of type (a, s) in the
anomalous dimension. By comparing

Ca,s(x)− 1 = γ1(x)

we find for the first coefficents of the Mellin transform

a0 = a

a1 =
a2 + 1

a

a2 = 1/3
sa− 1

a3

a3 = −1/45
5 sa3 − 3 a2s2 − 8 a2 + 11 sa− 8

a5

a4 =
1

4725

175 a5s− 343 a4 − 168 a4s2 + 45 a3s3 + 821 sa3 − 408 a2s2 − 776 a2 + 856 sa− 493

a7

a5 = − 1

496125a9

(
6125 a7s− 7203 a6s2 − 13328 a6 + 42366 a5s+ 3195 a5s3 − 36696 a4s2

)

59

4 Beyond the chord diagram expansion

By setting a = 1 we find:

1, 2,
1

3
(s− 1),

−1

45

(
−3 s2 + 16 s− 16

)
where 3s2−16s+16 = (3s−4)(s−4) For C(1,2) we have the Catalan numbers, for C(1,1)

the Motzkin numbers hence we have:

(1, 1) : 1, 2, 0,
16

45

(1, 2) : 1, 2,
1

3
,− 4

45

We do not know how to evolve this experiment into a proper statement. However,
all the constant coefficients of the γ[l]1,k seems to be a Catalan-like number for all cases
that we checked so far (the unknown s of the polynomial γ[l]1,k has nothing to do with the
parameter s of the Catalan-like number Ca,s. Nevertheless, it seems for us impossible
to make a similar statement for the non-constant coefficients.

60

5 Computer related computations

5.1 Documentation of the chord programs

5.1.1 Using the chord-db

The chord-db is a database that contains all rooted connected chord diagrams from size
three (the chord diagrams for size one and two are not included, since they are trivial to
calculate) to size eight. The database consists of one table rccds that has the following
columns and sqlite3 datatypes listed below :

size: INTEGER
diagram: TEXT
terminal: TEXT
branchv: TEXT
dvector: TEXT
igraph: TEXT
rootshare: TEXT
instree: TEXT

It is useful for testing conjectures and recovering chord diagrams with several prop-
erties. For example you might want to know the root share decomposition of a given
chord diagram without doing it by hand or you want to recover the chord diagram by a
given insertion tree. We will discuss several examples here.

Example 5.1.1.

sqlite> select * from rccds where size=4 and instree = "(0 1 (0 (0 2 3) 4))";

queries the data for the chord diagram with the insertion tree:

1

2 3

4

The output of the sql query is will be the following cryptic output:

4|1 1 3 2 2 6 3 4 7 4 5 8|4|0 0 1 2|1 3 2 2|1(2) 2(3 4) 3(4) |(1 1 (2 2 (1 3 4)))|(0 1 (0 (0 2 3) 4))

which we will discuss now: Every column is seperated by |, so we have according to the
column description that we gave already:

61

5 Computer related computations

size = 4
diagram = 1 1 3 2 2 6 3 4 7 4 5 8
terminal = 4
branchv = 0 0 1 2
dvector = 1 3 2 2
igraph = 1(2) 2(3 4) 3(4)
rootshare = 1 1 (2 2 (1 3 4)))
instree = (0 1 (0 (0 2 3) 4))

The explanation of size, terminal and branchv is straight forward:

|C| = 4,Ter(C) = {4}, νC = (0, 0, 1, 2)

.

diagram = 1 1 3 2 2 6 3 4 7 4 5 8

encodes the chord diagrams in the following way: every third number encodes the label
in the intersection order. After each label a pair of numbers tells us the chord. So the
above chord diagram corresponds to the permutation:

(13)(26)(47)(58)

.

igraph = 1(2) 2(3 4) 3(4)

encodes the intersection graph by a simple adjacency list (since we have a bidirectional
graph, we only need to encode the adjacency to higher vertices): The vertex 1 is adjacent
to 2, 2 is adjacent to 3 and 4 and 3 is adjacent to 4. Now, we are able to explain

dvector = 1 3 2 2

It encodes the number of neighbors a vertex has. So in this example: 1 has one neighbor
(the vertex 2), 2 has three neighbors (the vertices 1, 3 and 4), 3 has two neighbors (2
and 4) and 4 has also two neighbors (2 and 3).

rootshare = (1 1 (2 2 (1 3 4)))

tells us the root share decomposition into single chords which will have the induced
labeling in Polish prefix notation. Thus,

(1 1 (2 2 (1 3 4)))

corresponds to

|1 ◦1 (|2 ◦2 (|3 ◦1 |4))

where |k denotes the chord diagram with one chord and induced labeled with k.

62

5.1 Documentation of the chord programs

Example 5.1.2. We can use the following sqlite notation to count several classes of
chord diagrams. In sqlite a single underscore matches any single character, so

sqlite> select count(*) from rccds where branchv like "_ _ _ _ 4";

will count the chord diagrams

{C ∈ R : νC = (ν1, ν2, ν3, 4)}

which is 24. A % denotes in sqlite like statements arbitrary numbers of character, so
the query

select count(*) from rccds where size=5 and dvector like "%4";

will ask for the chord diagrams of size 5 where in each chord diagram the last chord
must cross four other chords. Again the answer is 24. This confirms the branch-left
intersection graph duality (see 2.3.1).

5.1.2 Other programs

Since the chord program is written as parallel as it can get, the core is a function
that generates (not necessary connected) rooted chord diagrams and passes it over to a
callback function whenever it finds one. If we are interested in rooted connected chord
diagrams we can directly test for it in the callback function:

if (is_connected (chord_diagram))

Note that you should be careful when defining your own callback function: It must be
thread safe because it is possible that two callback functions are running parallel on
different threads. So shared memory usage should be avoided. If you don’t know the
concepts of multi-thread programming just be sure that a callback functions never uses
global variables except those passed into the arguments of the callback function. So if
you want to calculate invariants of a chord diagram define a structure where all your
invariants are stored in, allocate as many structures as the number of threads in your
program and merge those structure at the end when all callback threads are joined.

A chord is encoded in the structure chord_t, where first is the label of the first
vertex, second the label of the second vertex and id is reserved for a label in a chord
diagram.

struct chord_t
{

int first;
int second;
int id;

};

63

5 Computer related computations

A special chord EMPTY_CHORD is defined and serves as delimiter object in a
chord_t string(it has all three values to -1). Chords should be defined new by the
method mk_chord. A chord diagram should be represented by a chord_t string (that
is an chord_t array where at the end an EMPTY_CHORD determines the end in
analogy to 0 in a plain c string. For example the following lines define the wheel with
three spokes:

chord_t wheel[4];
wheel[0] = mk_chord(1,4,1);
wheel[1] = mk_chord(2,5,2);
wheel[2] = mk_chord(3,6,3);
wheel[3] = EMPTY_CHORD;

To generate a tikzpicture snippet for latex of a chord diagram you can use the program
plot-chord-diagram. It is used as follows:

plot-chord-diagram "x0 y0 l0 x1 y1 l1 xN yN lN"

where x0 is the first vertex of the first chord, y0 the second vertex of the first chord and
l0 its label and so on.

Example 5.1.3. plot-chord-diagram "1 4 1 2 5 2 3 6 3"
returns the following string that will display the wheel with three spokes in your latex
file:

\begin{tikzpicture}
\draw[black,thin](0,0) circle(0.75);
\foreach \a in {0,60,...,359}
\draw[fill=black] (\a:0.75) circle(0.3mm);
\draw (0:0.75) circle(0.9mm);
\draw[thin,black](180:0.75) -- (0:0.75);
\draw(180:0.95) node{1};\draw[thin,black](240:0.75) -- (60:0.75);
\draw(240:0.95) node{2};\draw[thin,black](300:0.75) -- (120:0.75);
\draw(300:0.95) node{3};\end{tikzpicture}

For fast checking if a chord diagram is connected, you can use the function

bool fast_is_connected(chord_t* d, int size)

where d is a pointer to the beginning of a chord_t string and size gives the size of the
chord diagram, not that you can save the EMPTY_CHORD delimiter since you have
to specify the right size. The chord diagram size should not be bigger than the bit size
of an int, so it should not be bigger than 8*sizeof(int). Example:

if(fast_is_connected(wheel,3))
{

printf("The wheel with three spokes is connected - what a surprise!");
}

64

5.1 Documentation of the chord programs

To get the connected components of a disconnected chord diagrams you can use the
function

void fast_get_connected_components(chord_t *dest,
int *num,
chord_t *src,
int size)

where the value of the integer num will be number of connected components, src is the
chord diagram that you want to be analyzed for connected components and size is its
size. the pointer dest must point to a memory block where the connected components
will be placed in, we recommend to allocate size*size*sizeof(chord_t) bytes for dest:

// defined wheel as wheel with three spokes as before
...
chord_t *dest = new chord_t[3*3];
int num = 0;
fast_get_connected_components(dest, &num, wheel, 3);

the connected components are saved in the following way as chord_t strings as before
and are seperated via EMPTY_CHORD, since we have stored the number of connected
components in num we can easily recover the connected components via a for loop.
To get the terminal chords and the right labeling you can use the method:

void fast_modify_to_intersection_order(chord_t *dest,
int dest_size,
chord_t* c,
int size,
int *label,
int *terminals,
int *num_term)

where chord_t* c is the source chord diagram, size the size of the source chord diagram
chord_t *dest is the target chord diagram, textbfint dest_size the size of the target
chord diagram, int *label pointer to an int that serves as a helper for the method, int
*terminals a pointer to an int array of chord diagram size - 1 (because it is the maximal
amount of terminal chords that a chord diagram can have) and int *num_term a
pointer to an int where the number of terminals should be stored in.

Example 5.1.4.

// defined wheel as wheel with three spokes as before
// ...

int terminals[2];
int label;
int numter;
fast_modify_to_intersection_order(wheel, 3, wheel, 3, label, terminals, numter);

65

5 Computer related computations

after execution the values of terminals[0] will be three, the value of terminals[1] will be
undefined and the value of numter will be 1. The ids of the wheel chords will be set to
the right labeling if they are not already set to it.

The following function calcultes the root share decomposition into two smaller chord
diagrams C = C1 ◦k C2:

void fast_rsd_decomp(chord_t* &dest1,
int* size1,
chord_t* &dest2,
int* size2,
int* index,
chord_t* src,
int src_size)

where C1 will be stored in dest1 and |C1| will be stored in size1, C2 will be stored in
dest2 and |C2| will be stored in size2, k will be stored in the int where index points to,
the input C needs to be placed into src and its size into src_size. Note that you need
allocate the memory for dest1 and dest2 by yourself.

5.1.3 Documentation of bintree

bintree.cc and bintree.h implement a binary tree tree without dynamical memory
allocation. It is useful for binary trees that are of bounded size as in our situation. Only
allocating memory once, ensures that we do not waste cpu for allocating and deallocating
memory for every node. The binary trees are restricted to a node value of an int but
it should be no problem to modify the code to work with other types. Every node is
modelled by the struct

struct bt {
int data;
bt* left;
bt* right;
bt* parent;

};

The following methods are implemented:

inline bt* bt_alloc(int size);

A macro for stdlib malloc to allocate size nodes and returning a pointer to the first
node.

inline void bt_free(bt* ptr);

A macro for stdlib free.

66

5.1 Documentation of the chord programs

inline bt* bt_new_node(bt** pool, bt* l, bt* r, bt* p, int d);

A macro for creating a new node where

pool points to an already allocated memory pool.

l points to the left node or NULL if it has no.

r points to the right node or NULL if it has no.

p points to the parent node or NULL if it has no.

d is the value of the node. If bt_new_node is used for a new memory pool the first
node using it must be created it with d = BT_INIT_VALUE, The nodes data
may be changed aftewards

Since we do not want dynamic memory allocation, the first argument must point to the
memory pool that we allocated with bt_alloc or that is a fixed size bt array.

inline bool bt_is_leaf(bt* root);

A macro that checks if the left and right node of root is NULL which means that root
is a leaf in our implementation.

inline void bt_copy(bt* dest, bt* src, int size);

A macro that wraps stdlib memcpy. Note that you have to ensure that dest is allocated
properly by yourself.

void bt_pre_helper(bt* node, int nth, bt** target, int *pre_label);

After executing this method properly. target points to the nth pre-order node starting
at node. pre_label must point to an int that has been initialized with 1.

void bt_insert_at_nth_pre(bt** pool,bt** root, bt* src, int nth, int insert_data);

Insert the tree src at the pre-order nth node of root by creating a new node with in-
sert_data. For creating the new node the method needs a pointer pool which has at
least one node allocated already.

void bt_print_pre(bt* root);

Prints a binary tree starting at root to stdio. Basically used for debug purposes.

void bt_print_node(bt* node);

Prints a tree node to stdio. Basically used for debug purposes.

67

5 Computer related computations

5.1.4 Source code

The whole source code is available at github under the url:

http://github.com/Jeschli/rccds-cc

All chord diagram related algorithms are found in

rccds.cc resp. rccds.h

rccds.h

#ifndef RCCDS_H

#include <stdio.h>
#include <map>
#include <list>
#include <set>
#include <algorithm>
#include <time.h>
#include <iostream>
#include <iomanip>
#include <vector>
#include <bitset>
#include "BinTree.h"

#include <string.h>

using namespace std;
//using namespace jeschli;
using namespace markus;

/*
* chord_t chord type
*/
struct chord_t
{
int first;
int second;
int id;

friend bool operator==(chord_t &c1, chord_t &c2);
friend bool operator==(const chord_t &c1, const chord_t &c2);
};

chord_t mk_chord(int f,int s,int i);

extern const chord_t EMPTY_CHORD; // = mk_chord(-1,-1,-1);

68

5.1 Documentation of the chord programs

typedef vector<chord_t> diagram_t;

struct sort_vertex_pair
{
int *ptr;
int n;
};

bool svpSmaller(sort_vertex_pair , sort_vertex_pair);

bool crosses(chord_t, chord_t);
bool fast_is_connected(chord_t*, int);
void fast_remove_1(chord_t *, chord_t *, int);
void fast_get_connected_components(chord_t *, int *, chord_t *, int);
void fast_vertex_normalize(chord_t *, int);
void fast_rsd_decomp(chord_t* &, int* , chord_t* &, int* , int* , chord_t* , int);
/*
Following method needs to be called like this:
int label = 0;
int num_term = 0;
vector<int> terminals(CHORDS-1);

get_intersection_terminals(chord_array, CHORDS, chord_array,
CHORDS, &label, &terminals, &num_term);

*/
void get_intersection_terminals(chord_t *dest, int dest_size, chord_t* c,

int size, int* label, vector<int> *terminals, int *num_term);

typedef unsigned long long myint;
void get_intersection_terminals_bitmask(chord_t *dest, int dest_size,

chord_t* c, int size, int *label, myint *bitmask);

BinTree<int>* fast_build_int_tree(BinTreeManager<int>& , chord_t *, int);
BinTree<int>* insert_at(BinTreeManager<int>&, BinTree<int>* , BinTree<int>* , int);
BinTree<int>* get_insertion_tree(BinTreeManager<int>&, BinTree<int>*);
void get_ld_map(map<int,int> *, BinTree<int>*, int);

void generate_diagrams(set<int> , diagram_t& , void *(*)(diagram_t*));

bool isSmaller(int i, int j);

#ifndef CHORDS
#define CHORDS 4

#endif

69

5 Computer related computations

#define RCCDS_H
#endif

rccds.cc

#include "rccds.h"

bool operator==(chord_t &c1, chord_t &c2)
{

return (c1.first==c2.first) && (c1.second==c2.second) && (c1.id==c2.id);
}

bool operator==(const chord_t &c1, const chord_t &c2)
{

return (c1.first==c2.first) && (c1.second==c2.second) && (c1.id==c2.id);
}

chord_t mk_chord(int f,int s,int i)
{

chord_t rval;
rval.first = f;
rval.second = s;
rval.id = i;
return rval;

}

const chord_t EMPTY_CHORD = mk_chord(-1,-1,-1);

bool isSmaller(int i, int j) { return i<j; }

int min(set<int> s)
{

return *min_element(s.begin(), s.end() , isSmaller);
}

bool svpSmaller(sort_vertex_pair s1, sort_vertex_pair s2)
{

return (s1.n<s2.n);
}

bool crosses(chord_t x1, chord_t x2)
{

return (
(x1.first < x2.first) &&
(x2.first < x1.second) &&
(x1.second < x2.second)

70

5.1 Documentation of the chord programs

) || (
(x2.first < x1.first) &&
(x1.first < x2.second) &&
(x2.second < x1.second)

);
}

/*
* For fast processing the chord diagram should be a string
* of size CHORD, it is assumed that it is this size! It also assumes
* that bitsize(int) > CHORD > 1!
*/

bool fast_is_connected(chord_t* d, int size)
{

int * disj_sets = new int [size]();
disj_sets[0] = 1;

for(int v = 1 ; v < size ; v++)
{

int marked_sets = 0;

for(int s = 0 ; disj_sets[s] != 0 && s < size ; s++)
{

for(int w = 0 ; w <= v ; w++)
{

int W = disj_sets[s] & (1 << w); // test if the bit w
// is set

if(!W) continue;

if(/*markus::*/crosses(d[v], d[w]))
{

marked_sets |= (1 << s);
break;

}
}

}
if(marked_sets == 0)

{
int s;
for(s = 0 ; disj_sets[s] != 0 ; s++) {};
disj_sets[s] = (1 << v);

}
else

{
int pos;
int min;

71

5 Computer related computations

bool first = true;

for(pos = 0 ; pos <= v ; pos++)
{

if(marked_sets & (1<<pos))
{

if(first == true)
{

min = pos;
first = false;
continue;

}
disj_sets[min] |= disj_sets[pos];
disj_sets[pos] = 0;

}
}

disj_sets[min] |= (1 << v);
}

}
int s = 0;
for(int k = 0 ; k < size ; k++)

{
if(disj_sets[k] != 0) s++;

}

delete [] disj_sets;
if(s == 1) return true;
return false;

}

/*
Removes chord 1 from diagram and normalizes the labels but not the ids!
Requires a chord_t string of length N, dest must already be
allocated with N-1. Writes the resulting chord string to dest

*/
void fast_remove_1(chord_t *dest, chord_t *src, int N)
{

memcpy(dest, src+1, (N-1)*sizeof(chord_t));
}

/* fast_get_connected_components(chord_t*,int*,chord_t*,int=)
* In: src, size
* src - array of chord_t of size
* Out: num, dest
* num - number of connected component ;

72

5.1 Documentation of the chord programs

* this is not accurate if you set a bigger size
* than your chord diagram is actually is
* dest - array of chord_t of size*size ; must be allocated before!
*/

void fast_get_connected_components(chord_t *dest, int *num, chord_t *src, int size)
{

// int disj_sets[size] = { 0 };
int *disj_sets = new int[size]();
disj_sets[0] = 1;
for(int v = 1 ; v < size ; v++)

{
int marked_sets = 0;
for(int s = 0 ; disj_sets[s] != 0 && s < size ; s++)

{
for(int w = 0 ; w <= v ; w++)

{
int W = disj_sets[s] & (1 << w); // test if the bit w

// is set
if(!W) continue;

if(/*markus::*/crosses(src[v], src[w]))
{

marked_sets |= (1 << s);
break;

}
}

}
if(marked_sets == 0)

{
int s;
for(s = 0 ; disj_sets[s] != 0 ; s++) {};
disj_sets[s] = (1 << v);

}
else

{
int pos;
int min;
bool first = true;
for(pos = 0 ; pos <= v ; pos++)

{
if(marked_sets & (1<<pos))

{
if(first == true)

{
min = pos;
first = false;

73

5 Computer related computations

continue;
}

disj_sets[min] |= disj_sets[pos];
disj_sets[pos] = 0;

}
}

disj_sets[min] |= (1 << v);
}

}
int s = 0;
for(int k = 0 ; k < size ; k++)

{
if(disj_sets[k] != 0)

{
int t = 0;
for(int m = 0 ; m < size ; m++)

{
if((disj_sets[k] & (1 << m)))

{
dest[s*size + t] = src[m];
t++;

}
}

if(t < size) dest[s*size + t] = mk_chord(-1,-1,-1);
s++;

}
}

if(s < size) dest[s*size] = mk_chord(-1,-1,-1);
*num = s;

delete [] disj_sets;
}

void fast_vertex_normalize(chord_t *src, int size)
{

// sort_vertex_pair * svp = new sort_vertex_pair[size*2];
vector<sort_vertex_pair> svp(2*size);
for(int i = 0 ; i < 2*size ; i++)

{
if(i%2)

{
svp[i].ptr = &src[i/2].second;
svp[i].n = src[i/2].second;

}
else

{

74

5.1 Documentation of the chord programs

svp[i].ptr = &src[i/2].first;
svp[i].n = src[i/2].first;

}
}

sort(svp.begin() , svp.end() , svpSmaller);
for(int i = 0 ; i < 2*size ; i++)

{
*svp[i].ptr = i+1;

}
}

/*
* fast_rsd_decomp
*/

void fast_rsd_decomp(chord_t* &dest1, int* size1,
chord_t* &dest2, int* size2,
int* index, chord_t* src, int src_size)

{
if(src_size == 1)

{
dest1 = src;
*size1 = 1;
dest2 = NULL;
*size2 = 0;
return;

}
chord_t* src_rem1 = new chord_t [src_size-1];
chord_t* comp = new chord_t[(src_size-1)*(src_size-1)];
memset(comp,0,(src_size-1)*(src_size-1)*sizeof(chord_t));
int comp_num = 0;
fast_remove_1(src_rem1, src, src_size);
fast_get_connected_components(comp,&comp_num,src_rem1,src_size-1);
if(comp_num == 1)

{
dest1 = new chord_t;
memcpy(dest1, src, sizeof(chord_t));
*size1 = 1;
dest2 = new chord_t [src_size-1];
memcpy(dest2, src_rem1, sizeof(chord_t)*(src_size-1)) ;
*size2 = src_size-1;
*index = dest1[0].second - 2;

}
else

{
int comp_num = 1;
chord_t * temp_dest1 = new chord_t[src_size-1]();

75

5 Computer related computations

chord_t * temp_dest2 = new chord_t[src_size-1]();
int size_1 = 0;
int size_2 = 0;
temp_dest1[size_1++] = src[0];
for(int i = 0 ; i < (src_size-1)*(src_size-1) ; i++)

{
if((i%(src_size-1))==0 && comp[i] == EMPTY_CHORD)

break;
if((i%(src_size-1))==0);
if(comp[i] == EMPTY_CHORD) {
continue;
}
if(comp[i].id == 0) continue;
if((i/(src_size-1)) == 0)
{

temp_dest2[size_2++] = comp[i];
}
else
{

temp_dest1[size_1++] = comp[i];
}

}
dest1 = new chord_t[size_1];
dest2 = new chord_t[size_2];

memcpy(dest1, temp_dest1, sizeof(chord_t)*size_1);
memcpy(dest2, temp_dest2, sizeof(chord_t)*size_2);

*size1 = size_1;
*size2 = size_2;

int y1 = dest1[0].second;
int x2 = dest1[1].first;
int min = (y1<x2)?y1:x2;

*index = min - 2;

delete [] temp_dest1;
delete [] temp_dest2;

}
delete [] src_rem1;
delete [] comp;

}

// this is quite crappy and depends that fast_rem1
// and fast_get_connected_components

76

5.1 Documentation of the chord programs

// do not call by reference but by value
void fast_modify_to_intersection_order(

chord_t *dest, int dest_size, chord_t* c, int size,
int *label, int *terminals, int *num_term

)
{

if(c == NULL) return;
// find the right chord to modify the label
for(int i = 0 ; i < dest_size ; i++)

{
if(dest[i].first == c->first && dest[i].second == c->second)

{
dest[i].id = *label;
(*label)++;
break;

}
}

// the last chord in intersection order of a connected component is
// always a terminal chord
if(size == 1) {

terminals[(*num_term)++] = (*label)-1; // label already increased before
return;

}
chord_t d[CHORDS] = {0};
chord_t conn_matrix[(CHORDS-1)*(CHORDS-1)] = {0};
chord_t* comps[CHORDS] = {0};
int comp_sizes[CHORDS] = {0};

fast_remove_1(d,c,size);
int num_comp;
fast_get_connected_components(conn_matrix, &num_comp, d, size-1);
// parsing through connected components

if(num_comp == 1)
{

fast_modify_to_intersection_order(dest,dest_size,d, size-1, label,terminals,num_term);
}

else
{

for(int i = 0 ; i < num_comp ; i++)
{

comps[i] = new chord_t [size];
}

int actual_comp = 0;

77

5 Computer related computations

int actual_size = 0;

for(int i = 0 ; i < (size-1)*(size-1) ; i++)
{

if((i%(size))==0 && conn_matrix[i].id == -1)
{

comp_sizes[actual_comp] = actual_size;
break;

}
if(conn_matrix[i].id == -1)

{
comp_sizes[actual_comp] = actual_size;
actual_comp++;
actual_size = 0;
continue;

}
if(conn_matrix[i].id == 0) continue;
comps[actual_comp][actual_size] = conn_matrix[i];
actual_size++;

}

for(int i = 0 ; i < num_comp ; i++)
{

if(comp_sizes[i] == 0)
{

continue;
}
fast_modify_to_intersection_order(dest, dest_size,

comps[i], comp_sizes[i], label,terminals,num_term);
}

}
}

BinTree<int>* fast_build_int_tree(BinTreeManager<int>& btm, chord_t *src, int size)
{

chord_t *first = NULL; chord_t *second = NULL;
int size1 = 0; int size2 = 0;
int index = 0;
fast_vertex_normalize(src,size); // vertex normalize
fast_rsd_decomp(first,&size1,second,&size2,&index,src,size);
BinTree<int>* iroot = btm.mk_BinTree_ptr(NULL,NULL,NULL,index);
BinTree<int>* lnode;
BinTree<int>* rnode;
if(size1 == 1) {

78

5.1 Documentation of the chord programs

lnode = btm.mk_BinTree_ptr(NULL,NULL,NULL,first[0].id);
}
else {

lnode = fast_build_int_tree(btm,first,size1);
}
if(size2 == 1) {

rnode = btm.mk_BinTree_ptr(NULL,NULL,NULL,second[0].id);
}
else {

rnode = fast_build_int_tree(btm,second,size2);
}

lnode->parent = iroot; rnode->parent = iroot;
iroot->left = lnode; iroot->right = rnode;

// cleanup the memory allocated by fast_rsd_decomp
if(first != NULL)
{

if(size1 == 1)
delete first;

else {
delete [] first;
first = NULL;

}
}
if(second != NULL)
{

delete [] second;
second = NULL;

}
return iroot;

}

BinTree<int>* insert_at(BinTreeManager<int>& btm, BinTree<int>* left,
BinTree<int>* right, int n)

{
BinTree<int>* rval = btm.copy(right);
insert_at_nth_pre(btm,&rval,left,n,0);

return rval;
}

BinTree<int>* get_insertion_tree(BinTreeManager<int>& btm, BinTree<int>* node)
{

79

5 Computer related computations

if(node == NULL)
return NULL;

if(isLeaf(node)) {
return btm.copy(node);

}
return insert_at(btm,

get_insertion_tree(btm,node->left),
get_insertion_tree(btm,node->right),
node->data);

}

void get_intersection_terminals(chord_t *dest, int dest_size,
chord_t* c, int size, int* label,
vector<int> *terminals, int *num_term)

{
if(size == 1)
{

*label += 1;
// fast_connected_component
// returns copies no references,
// we have to find the right reference manually :(
for(int i = 0 ; i < dest_size ; i++)
{

if(dest[i].first==c->first && dest[i].second==c->second)
{

dest[i].id = *label;
(*terminals)[*num_term] = *label;
*num_term += 1;
break;

}
}

return;
}
else
{

chord_t d[CHORDS] = {0};
chord_t conn_matrix[(CHORDS-1)*(CHORDS-1)] = {0};
chord_t* comps[CHORDS] = {0};
int comp_sizes[CHORDS] = {0};
int num_comp;

*label += 1;

for(int i = 0 ; i < dest_size ; i++)

80

5.1 Documentation of the chord programs

{
if(dest[i].first==c[0].first && dest[i].second==c[0].second)
{

dest[i].id = *label;
break;

}
}
fast_remove_1(d,c,size);
fast_get_connected_components(conn_matrix, &num_comp, d, size-1);
for(int i = 0 ; i < num_comp ; i++)
{

int mul = i*(size-1);
if(conn_matrix[mul].id == -1)

break;
int actual_size = 0;
for(int j = 0 ; j < size-1 ; j++)
{

if(conn_matrix[mul+j].id == -1)
break;

actual_size++;
}
get_intersection_terminals(dest,dest_size,

&conn_matrix[mul], actual_size,
label,terminals,num_term);

}

}
}

void get_ld_map(map<int,int> *mp, BinTree<int>* node, int counter)
{

if(node == NULL) return;
if(isLeaf<int>(node))

{
pair<int,int> p;
p.first = node->data;
p.second = counter;
mp->insert(p);
return;

}
if(node->right != NULL)

{
get_ld_map(mp,node->right,++counter);

}
if(node->left != NULL)

{

81

5 Computer related computations

counter = 0;
get_ld_map(mp,node->left,counter);

}

}

The following programming (lpthread-rccds-test.cc) generates the chord data using the
lpthread library for multithreading.

#include "rccds.h"
#include <pthread.h>
#include <iostream>
#include "tbl_counter.h"

typedef vector<chord_t> diagram_t;

unsigned int total = 0;

struct thread_data_t
{

set<int> A;
diagram_t D;
unsigned int total;
TBLCounter tbl_counter;

} thread_data[(CHORDS*2-1)];

void *proc_diags(diagram_t* per,void* ptr)
{

thread_data_t* data_ptr = (thread_data_t*) ptr;
chord_t chord_array[CHORDS];
int k = 1;

for(diagram_t::iterator j = per->begin() ; j != per->end() ; j++)
{

chord_t chord = *j;
chord.id = k;
chord_array[k-1] = chord;
k++;

}

if(fast_is_connected(chord_array,CHORDS))
{

int label = 0;
int num_term = 0;
vector<int> terminals(CHORDS-1);

82

5.1 Documentation of the chord programs

get_intersection_terminals(chord_array,CHORDS,chord_array,CHORDS,
&label,&terminals,&num_term);

data_ptr->total++;
BinTreeManager<int> btm;

BinTree<int>* int_tree = fast_build_int_tree(btm, chord_array, CHORDS);
BinTree<int>* ins_tree = get_insertion_tree(btm , int_tree);

map<int,int> bvector;
get_ld_map(&bvector, ins_tree, 0);
data_ptr->tbl_counter.add(terminals, bvector);

}

return NULL;
}

void generate_diagrams_mthread(set<int> avail, diagram_t& temp_diagram,
void *(*callback_fun)(diagram_t*,void*), void* ptr)

{
if(avail.empty()) // new diagram found, add it

{
(*callback_fun)(&temp_diagram,ptr);

return;
}

set<int>::iterator min = min_element(avail.begin(), avail.end() , isSmaller);
set<int>::iterator max = max_element(avail.begin(), avail.end() , isSmaller);
for(int i = *(min)+2 ; i <= *max ; i++)

{
if(avail.find(i) == avail.end())

{
continue;

}
set<int> avail_new = avail;
avail_new.erase(*min);
avail_new.erase(i);
diagram_t temp_diagram_new = temp_diagram;
chord_t c;
c.first= *min;
c.second = i;
temp_diagram_new.push_back(c);

generate_diagrams_mthread(avail_new, temp_diagram_new, callback_fun, ptr);
}

}

83

5 Computer related computations

void *process_fun(void * ptr)
{

thread_data_t* data = (thread_data_t*) ptr;
generate_diagrams_mthread(data->A,data->D,&proc_diags,ptr);
return NULL;

}

int main(int argc, char const *argv[])
{

struct timespec tstart={0,0}, tend={0,0};
clock_gettime(CLOCK_MONOTONIC, &tstart);

set<int> avail;
for(int i = 2 ; i <= 2*CHORDS ; i++) avail.insert(i);
int k = 0;
for(int i = 3 ; i <= (2*CHORDS - 1) ; i++)

{
set<int> x = avail;
x.erase(i);
diagram_t d;
chord_t first_chord = mk_chord(1,i,1);
d.push_back(first_chord);
thread_data[k].A = x;
thread_data[k].D = d;
thread_data[k].total= 0;
k++;

}

pthread_t threads[(CHORDS*2-1)];
for(int i = 0 ; i < (CHORDS*2-1) ; i++)

pthread_create(&threads[i],NULL,process_fun,(void*)&thread_data[i]);

for(int i = 0 ; i < (CHORDS*2-1) ; i++)
pthread_join(threads[i], NULL);

TBLCounter global;
unsigned int total = 0;
for(int i = 0 ; i < (CHORDS*2-1) ; i++)
{

global.merge_from(thread_data[i].tbl_counter);
total += thread_data[i].total;

}
global.out();
cout << "Total connected chord diagrams of size " <<

84

5.1 Documentation of the chord programs

CHORDS << ": " << total << endl;

clock_gettime(CLOCK_MONOTONIC, &tend);
printf("computation took about %.2f seconds\n",

((double)tend.tv_sec + 1.0e-9*tend.tv_nsec) -
((double)tstart.tv_sec + 1.0e-9*tstart.tv_nsec));

return 0;
}

85

Bibliography

[1] Martin Aigner. Catalan-like numbers and determinants. Journal of Combinatorial Theory,
Series A, 87(1):33 – 51, 1999.

[2] David J. Broadhurst and D. Kreimer. Combinatoric explosion of renormalization tamed
by Hopf algebra: Thirty loop Pade-Borel resummation. Phys.Lett., B475:63–70, 2000.

[3] L. Foissy. Faà di bruno subalgebras of the Hopf algebra of planar trees from combinatorial
Dyson-Schwinger equations. Adv. Math, 218:136–162, 2008.

[4] Gerald B. Folland. Quantum Field Theory: A Tourist Guide for Mathematicians. American
Mathematical Society, illustrated edition edition, August 2008.

[5] Dirk Kreimer. Dyson-Schwinger equations. http://www2.mathematik.hu-berlin.de/
~kreimer/wp-content/uploads/SkriptDSE.pdf, 2013.

[6] Dirk Kreimer. Renormalization and renormalization group. http://www2.mathematik.
hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf, 2013.

[7] N. Marie and K. Yeats. A chord diagram expansion coming from some Dyson-Schwinger
equations. ArXiv e-prints, October 2012.

[8] Michael E. Peskin and Dan V. Schroeder. An Introduction To Quantum Field Theory
(Frontiers in Physics). Westview Press, 1995.

[9] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Fourier analysis, self-
adjointness. Number Vol. 2 in Fourier Nanlysis, Self-adjointness. Academic Press, 1975.

[10] Barry Simon. The Classical Moment Problem as a Self-Adjoint Finite Difference Operator.
Advances in Mathematics, 137(1):82 – 203, 1998.

[11] David Tong. Lectures on quantum field theory. http://www.damtp.cam.ac.uk/user/
tong/qft.html, 2006.

[12] Guillaume van Baalen, Dirk Kreimer, David Uminsky, and Karen Yeats. The QED
β-function from global solutions to Dyson–Schwinger equations. Annals of Physics,
324(1):205–219, 2009.

[13] Walter D. Van Suijlekom. The hopf algebra of feynman graphs in Quantum Electrody-
namics. Letters in Mathematical Physics, 77(3):265–281, 2006.

[14] Wikipedia. Binary tree — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Binary%20tree&oldid=650967650, 2015. [Online; accessed 12-
March-2015].

87

http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptDSE.pdf
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptDSE.pdf
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://en.wikipedia.org/w/index.php?title=Binary%20tree&oldid=650967650
http://en.wikipedia.org/w/index.php?title=Binary%20tree&oldid=650967650

Bibliography

[15] Wikipedia. Catalan number — wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Catalan_number&oldid=689506640, 2015. [Online; accessed 23-
November-2015].

[16] Karen Yeats. Rearranging Dyson-Schwinger equations. Memoirs of the American Mathe-
matical Society, 2010.

88

https://en.wikipedia.org/w/index.php?title=Catalan_number&oldid=689506640
https://en.wikipedia.org/w/index.php?title=Catalan_number&oldid=689506640

	Introduction and outline
	Overview
	A short introduction to Quantum Field Theory

	Chord diagrams
	Rooted connected chord diagrams and Insertion Trees
	Root share decomposition and Insertion trees
	Branch-left vectors
	Branch-left intersection graph duality

	Proof of the chord diagram expansion
	Overview
	Renormalization group recurrence
	Leaf labels, diamonds and tree decomposition
	Shuffling the trees of chord diagrams

	Bridge equation

	Beyond the chord diagram expansion
	Using the chord-db and hunt for new numbers
	A canonical example
	Nice structures in the generic mixed case
	Anomalous Dimension and Catalan like numbers

	Computer related computations
	Documentation of the chord programs
	Using the chord-db
	Other programs
	Documentation of bintree
	Source code

