ASSIGNMENT 5 SOLUTIONS

MATH 303, FALL 2011

If you find any errors please let me know.

MANIPULATION

- (M1) $\exists w \exists y (x = (w, y))$ you could also expand out more if you want.
- (M2) (1 point) Which of the following are well formed formulas and which of the well formed ones are good?
 - (a) Not well formed $(\ni \text{ is not in our language})$.
 - (b) Well formed and good.
 - (c) I took out too many brackets here. Let's say the formula is $(\forall x (x \in c)) \land (x = y)$, then this is well formed by not good.
 - (d) Well formed but not good.
- (M3) (1 point) Mark the free and bound variables in the following formulas.
 - (a) $\exists x^{\text{bound2}} \exists y^{\text{bound1}} ((y^{\text{bound1}} \in z^{\text{free}}) \lor (x^{\text{bound2}} \in z^{\text{free}}) \to \sim (z^{\text{free}} = w^{\text{free}}))$
 - (b) $\forall z^{\text{bound1}}(x^{\text{free}} = y^{\text{free}})$
 - $(c) \forall x^{\text{bound3}} \exists y^{\text{bound2}} (((x^{\text{bound3}} = y^{\text{bound2}}) \lor (y^{\text{bound2}} = z^{\text{free}})) \land \exists x^{\text{bound1}} (x^{\text{bound1}} \in y^{\text{bound2}}))$
- (M4) (a) propositional function
 - (b) propositional function
 - (c) not propositional function
- (M5) $\forall x \exists y ((x \in y) \land \exists z (y \in z)).$

Pure Math

(P1) (a) Use the fact twice:

$$\exists x \exists y ((y \in z) \lor (x \in z) \to \sim (z = w))$$

is equivalent to

$$\sim \forall x \sim (\exists y ((y \in z) \lor (x \in z) \to \sim (z = w)))$$

which is equivalent to

$$\sim \forall x \sim (\sim \forall y \sim ((y \in z) \lor (x \in z) \to \sim (z = w)))$$

which is equivalent to

$$\sim \forall x \forall y \sim ((y \in z) \lor (x \in z) \to \sim (z = w))$$

(b) The idea here is just to do the above to every appearance of ∃. Formally, let ψ be any formula in our language. Make a new formula θ which is formed as for ψ except that every time we applied rule 4 with a ∃ when forming ψ, instead of ∃xA(x) write ~ ∀x ~ A(x). Then θ and ψ are equivalent but θ has no ∃.

- (c) Yes, $\forall x A(x)$ is equivalent to $\sim \forall x \sim A(x)$ which by the given fact is equivalent to $\sim \exists x \sim A(x)$. Thus we can rewrite $\forall x A(x)$ as $\sim \exists x \sim A(x)$ as in the previous part in order to convert any formula to one with no \forall .
- (P2) Use \uparrow for the Sheffer stroke, that is $A \uparrow B = \sim (A \land B)$.
 - For \sim note that $A \uparrow A = \sim (A \land A) = \sim A$. To summarize

$$\sim A = A \uparrow A$$

For \wedge note that $A \wedge B = \sim \sim (A \wedge B) = \sim (A \uparrow B) = (A \uparrow B) \uparrow (A \uparrow B)$. To summarize

 $A \land B = (A \uparrow B) \uparrow (A \uparrow B)$

For \lor note that $A \lor B = \sim ((\sim A) \land (\sim B)) = (\sim A) \uparrow (\sim B) = (A \uparrow A) \uparrow (B \uparrow B)$. To summarize

$$A \lor B = (A \uparrow A) \uparrow (B \uparrow B)$$

IDEAS

(I1) (a) One possibility is

$$S_1:S_2$$
 is true.
 $S_2:S_3$ is true.
 \vdots

 $S_{n-1}:S_n$ is true. $S_n:S_1$ is false.

- (b) To show that there is no consistent way to assign truth values to the sentences of Yablo's paradox, first suppose S_1 is true. Then all the remaining sentences are false, but then it is false that S_2 is false, so we have a contradiction. Now suppose S_1 is false, so there is at least one true statement among the S_k for k > 1. Say S_i is true. Then every statement after S_i is true, and thus S_{i+1} is false. This is again a contradiction. In both cases we got a contradiction and so there is no consistent way to assign truth values to all the statements. For the comparison to the Liar's paradox, answers will vary.
- (I2) Answers will vary.