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1 Generating all cliques (Kreher and Stinson section 4.3)

1.1 What is a clique?

Given a graph G = (V, F) recall that a clique is subset C of the vertex set V such that every edge {x,y}
such that x,y € C is contained in E. Otherwise said, it is a subgraph which is also a complete graph. A
maximal clique of a graph is a clique which cannot be extended.

To understand the choice of terminology (clique), imagine that each edge denotes friendship amongst
a group. A clique is a group which are all mutually friends, much like the cliques of highschool....

Example. Maximal clique. The red vertices in the graph below are a maximal clique. There is no
vertex in the rest of the graph which is adjacent to all four elements of the graph, hence this clique is
maximal. We can clearly see a K5 else where in the graph, so it is not the maximum clique. In general,
the problem of finding the maximum clique for a given graph is NP-hard (Karp, 1972).

1.2 Application

Though stated abstractly, there are a vast collection of applications for an algorithm that generates all
cliques. Figure 1 gives an example.

1.3 Finding maximal cliques

Done naively, one could simply test all 2" subsets, but this is a very poor solution. Instead we will
describe a pruning algorithm that is quasi-linear in the size of the graph.

In order to proceed by backtracking, we need to define what is a configuration, and what is a feasible
partial solution. Then, we give a method to describe the choice sets. Recall, in the backpack example if
were processing a partial configuration and determined that we were already at the maximum allow-
able weight we did not consider configurations which added additional objects to the backpack.
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ABSTRACT

Motivation and Methods: All living organisms and the survival of
all cells crifically depend on their ability to sense and guickly adapt
to changes in the environment and to cther stress conditions. We
study stress response mechanisms in Saccharomyces cersvisiae
by idenfifying genes that, according to very stringent criteria, have
persistent co-expression under a variety of stress conditions. This
is enabled through a fast clique search method applied to the inter-
section of several co-expression graphs calculated over the data of
Gasch et al. This method exploils the ftopological characteristics of
these graphs.

Results: We cbserve cliques in the intersection graphs that are much
larger than expected under a null model of changing gene identities for
different siress conditions but maintaining the co-expression topology
within each one. Persistent cliqgues are analyzed to identify enriched
function as well as enriched regulation by a small number of TFs. These
TFs, therefore, characterize a universal and persistent reaction to stress
response. We further demenstrate that the verices {genes) of many
cliques in the intersection graphs are co-localized in the yeast genome,
o a degree far beyond the random expectation. Co-localization
can hypothetically contribute to a quick co-ordinated response. We
propose the use of persistent cligues in further study of properties of
co-regulation.

Supplementary information: hitpJ/www.cs technion.ac.il'~olegrof
stress.htmil

Contact: olegro @ cs.technion.ac.il

three mechanisms of stress response in Saccharomyces cerevisiae-
the positive transcriptional control activated by heat shock ele-
ments, stress response elements and AP-1 responsive elements.
They identify yeast genes with a universal stress response as
well as genes with a more specific reaction profile. In a break-
through application of a high-throughput approach, Gasch er al.
{2000} use expression profiling with microarrays to measure the
changes, as a function of time, of almost all yeast genes, as a result
of the exposure to a variety of stress conditions. They observe that a
large set of genes (~900) show drastic response to most of the
studied conditions. They also study the correlation between the
response patterns of genes in single stress conditions by using
clustering techniques. In this article we study the sets of genes
that seem to be persistently and strongly co-ordinated as part of
the stress response mechanism, not restricted to a single specific
condition.

For every stress condition we define the co-expression graph to
be an undirected graph whose vertices correspond to genes, and the
vertices of two genes are connected by an edge if their expression
profiles are sufficiently correlated. Mamely, the p-value of the
Pearson correlation between the expression patterns of the two
genes is statistically significant {p-value <0.01). Two genes are
said to be co-co-expressed in stress conditions A and B if their
expression patterns in both time-courses correlate; alternatively-
if they have an edge connecting them in both co-expression graphs.
The k-stress persistence graphs (k-pers) are the intersection graphs
of sets of k co-expression graphs. By studying cliques in &-pers

Figure 1: An example of an application of maximal clique to generating and confirming biological
hyptotheses.
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Here let us label the vertices 1...n, and consider a sequence of vertices [v, vs, . .., vy,] to be a partial
solution if and only if it forms a clique. Given this partial solution, we consider the set of all vertices
Cm={v:v>uv,and {v,v} € E;i=1...m}.

Let us be efficient in the computation of C,. We will keep track of the neighbour of each vertex
neighbour(v] := {z : {v,z} € E} and big[v] := {x € V : x > v}, the set of vertices that are larger’ than v
in the vertex ordering. These can be computed before the algorithm runs. Thus,

LECTURE 19 Maximal Clique

Cyn, = neighbour(x,,) Nbigger(xm,) N Cr—1.

Essentially, we know all of the neighbours of the vertices of x; i = 1..m — 1! So we use this. We
compute which neighbours of z,, are larger valued, and are also adjacent to z; for i = 1..m — 1.

Finally, we keep track of N[m] := N},_1] N neighbour(z,,—1]. We set N[1] = V. This is the set of
vertices that still need to be considered. Once we have N[m] = ), we are done.
All Cliques

AllCliques:= proc(m) // m=1,2, ..., n
global X // current feasible solution built up one vertex at a time.
// It is alway a clique (but not necc. maximal)
C // Choice set
local N // the set of vertices still to consider
neighbour
bigger

if m=1 then []

else output [x1,..., xm] // output one clique, and continue on
fi

if m=1 then N[m] := V // we are just getting started!

else N[m]: = neighbour[xm] intersect N[m-1]

// all the neighbours will be added to the

// choice set,

and hence be recursively

// considered. N[m]

is what is leftover.

fi

if N[m] is empty, then X is a maximal clique fi

if m=0, then C[m]:=V
else C[m]:= intersect ( neighbour[xm], bigger[xm], C[m-1])
fi

for each v in C[m] do
Xm:= Vv
AllCliques (m+1)
od;

end proc;

Example. Kreher and Stinson work through the following Example 4.1. They name neighbour “A” and
big “B”'
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Example 4.1 Finding all the cliques in a graph

0 v A, B,
6 | 0 1,36 1,2,3,4,5,6
1 0,2,4,5 2,3,4,5,6
2 1,3,4,5 3,4,5,6
5 2 30,26 4,56
4 1,2 5,6
4 3 5 1,2 6

6 0,3

3] [4] [5] [6]
6]

/\\ /[\ /[T\ [I
] [1,4] [1,5] [2,3]* [2,4] [2,5) [3,

(0]
[0,1)* [0,3] [0,6] [1,2

[0,3,6* [1,2,4]* [1,2,5]"

Maximal cliques are indicated with a *. i

The nodes of the state tree are all of the cliques, each presented once. The maximal cliques arise in
the leaves (although, not every leaf is a maximal clique because of pruning.

Exercise. Explain how to modify the algorithm to solve the problem of maximal independant set of a
graph.

2 Average case analysis

The state tree tells you the run-time of the algorithm. Each clique appears exacty once. Thus, the
run-time of the algorithm on G is proportional to ¢(G) * n, the number of cliques in the graph. It is easy
to compute the average value of this by considering all labelled graphs.

The total number of labelled graphs on n vertices is 2(5).
Define

_ 1
o(n) == ) > @)
* GeG(n)
We can do a sneaky computation to compute this sum, and hence the average number of cliques.

We break this apart, and it is the sum over every subset W C V of the probability that W is a

clique. This is straightforward to compute. The number of graphs where W is a clique are computed
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by considering all possible choices for the edges that are not within 1. There are (Z) total edges and

we have already accounted for (I'}!) of them, hence the number of edges not in W is (%) — (I'}/). By
alternating all possibilities of these edges to be in the graph or not we compute that the number of

graphs in which W is a clique is 2(3)=("2"), This depends only on the size of W hence
1

2'2) Gean)

_ (1n) 3 2% ®)
222wt

> 2-("%") 3)
WC[1..n]

B n n _<’2‘)

= 2 (k) 27, @)
k=1

Some estimations show that ¢(n) = O(n'°¢2("*1) which is considered quasipolynomial time. Thus
the average run time is O(n'°82(")+2),
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