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1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
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Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
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(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs
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Appendix B4
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8 26
IV.5 V.1
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23 IX.3 Combinatorial 

instances of discrete Mariolys
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13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie
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1 Enumeration
Perhaps the most fundamental question about a combinatorial class, is “how many?”. The enumeration
problem can be extremely useful for solving other problems, and our approach will use generating
functions since they are so extremely powerful. We will only just scratch the surface of their potential.

Our initial approach will build up a small toolbox of combinatorial constructions

• union

• cartesian product

• sequence

• set and multiset

• cycle

• pointing and substitution

which translate to simple (and not so simple) operations on the generating functions.

1.1 Generating functions
We now jump head first into generating functions. Wilf ’s book generatingfunctionology is a great first
text if you want more details and examples.

Definition. The ordinary generating function (OGF) of a sequence (An) is the formal power series

A(z) =

∞∑
n=0

Anz
n.

We extend this to say that the ogf of a class A is the generating function of its counting sequence
An = cardinality(An). Equivalently, we can write the OGF as

A(z) =
∑
α∈A

z|α|.

In this context we say that the variable z marks the size of the underlying objects.
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Exercise. Prove that these two forms for A(z) are equivalent.

For example, consider the class of graphs H given here

If we define size to be the number of vertices, then the generating function is simply

H(z) = z4 + z2 + z3 + z4 + z1 + z4 + z3 = z + z2 + 2z3 + 3z4.

On the other hand, if we define size to be the number of edges, then the ogf is

H(z) = z4 + z1 + z3 + z6 + z0 + z3 + z2 = 1 + z + z2 + 2z3 + z4 + z6.

In both these cases we are treating the generating function as some sort of projection in which we
replace each vertex (edge) by a single atomic “z” and forget all detailed information about the object
and then just gather the monomials together to get the ogf.

Thus our examples become

Binary words: W (z) =

∞∑
n=0

2nzn =
1

1− 2z

Permutations: P (z) =

∞∑
n=0

n!zn

The first of these is a simple geometric sum. The second function does not have any simple expression
in terms of standard functions. Indeed it does not converge (as an analytic object) for any z complex z
other than 0. However, we can still manipulate it as a purely formal algebraic object.

We only care about convergence in that we require that that the coefficient of any finite power of z
is finite. This brings us to even more notation:

Definition. Let [zn]f(z) denote the coefficient of zn in the power series expansion of f(z)

[zn]f(z) = [zn]

( ∞∑
n=0

fnz
n

)
= fn

2 Manipulating formal power series
2.1 Definitions
Let a0, a1, a2, . . . be a sequence of real numbers. We call the (possibly infinite) sum a0 + a1x + a2x

2 +
· · · + akx

k + . . . a formal power series. Here x is a variable, but we do not apriori care if the sum
makes sense for any value of x aside from 0. Despite this, we can consider it a function of x and write
it as A(x). We say that ak is the coefficient of xn in A(x), and we make use of the shorthand

[xk]A(x) = ak.

The sum is said to be formal because we cannot collapse any of the terms. So, if a0 + a1x + a2x
2 =

b0 + b1x+ b2x
2, then it must be that a0 = b0, a1 = b1 and a2 = b2. There is a single power series equal to

1: 1 = 1 + 0x+ 0x2 + . . . , and a single one equal to 0: 0 + 0x+ 0x2 + . . . .
The formal power series turns out to be a very convenient way to store a sequence. We will see

that we can store infinite sequences with a very small amount of memory using what we know about
functions formal power series which arise as Taylor series expansions around 0.
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2.2 Sum and Product
A formal power series is a mathematical object which behaves essentially like an infinite polynomial.
We can define addition and multiplication of power series. Let A(x) =

∑
n≥0 anx

n and B(x) =
∑
n≥0 a =

bnx
n. Then

A(x) +B(x) :=
∑
n≥0

(an + bn)x
n

A(x) ·B(x) :=
∑
n≥0

∑
0≤k≤n

akbn−kx
n.

Remark, we have completely specified the coefficient of xn for each n, and so the sum and product
are well defined. They can be computed in finite time given A(x) and B(x).

2.3 Multiplicative inverse A(x)−1

The multiplicative inverse of a formal power series A(x) is the formal power series C(x) =
∑
n≥0 cnx

n

that satisfies
A(x) · C(x) = 1.

Thus, ∑
n≥0

∑
k≥n

akcn−kx
n = 1 + 0x+ 0x2 + . . . .

Recall that two formal power series are equal if and only all of their coefficients are the same. This
leads to the system of equations:

a0c0 = 1 (1)
a1c0 + a0c1 = 0 (2)

a2c0 + a1c1 + a0c2 = 0 (3)
... (4)

This is a triangular system, and hence we can compute ck once we know of c0, . . . , ck−1. We see from (1)
that c0 = 1/a0, and provided that a0 6= 0, this is well-defined.

Example: The inverse of A(x) = 1− x. The above system simplifies to:

c0 = 1

−c0 + c1 = 0

−c1 + c2 = 0

...
−ck + ck+1 = 0

...

This has the unique solution: cn = 1 for all n. We should recognize this as the geometric series:

(1− x)−1 =
∑
n≥0

xn = 1 + x+ x2 + x3 + . . . .

2.4 Composition
We define composition of formal power series as follows:

A(B(x)) :=
∑
n≥0

an ·B(x)n.
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2.5 Differentiation
We can develop a complete theory of derivatives and integrals of formal power series using the power
rule d

dxx
k = kxk−1, and essentially generalizing the derivative of a polynomial. Remark, this does not

involve a limit and so the usual properties (sum rule, product rule, chain rule) should be proved from
the definition of formal power series.

• Definition: d
dxA(x) =

∑
n≥0(n+ 1)an+1x

n;

• Product rule: d
dx ; (A(x)B(x)) =

(
d
dxA(x)

)
B(x) +A(x)

(
d
dxB(x)

)
;

• Chain rule for powers: d
dx (A(x))

n = n(A(x))n−1 d
dxA(x).

Exercise. Prove the above product and chain rules.

2.6 Two special series: exp, log
The formal power series

∑
n≥0 x

n/n! is reminiscent of the Taylor series for the exponential, and hence
we define

exp(x) :=
∑
n≥0

xn/n!.

In fact, it satisfies all of the usual properties of exp, but again, since it is defined as the sum, these
properties should be proved from the basic formal power series properties:

• d
dx exp(x) = exp(x);

• exp(F (x) +G(x)) = exp(F (x)) · exp(G(x));

• exp(F (x))−1 = exp(−F (x)).

Similarly, we can define a series

log(1− x)−1 :=
∑
n≥1

xn

n
.

Exercise. Prove the following properties which we can derive from formal power series definitions:

1. d
dx log(1− x)

−1 = (1− x)−1;

2. log(exp(A(x))) = A(x);

3. exp(log(A(x))) = A(x), if a0=1;

4. log(A(x) +B(x)) = log(A(x)) + log(B(x)), if a0 = b0 = 1.

3 The basic toolbox for coefficient extraction
There are several key theorems to aid with coefficient extraction. If A(z) =

∑∞
n=0 anz

n, then [zn]A(z) :=
an.

Power rule
[zn]A(pz) = pn[zn]A(z)

Reduction rule
[zn]zmA(z) = [zn−m]A(z)

Sum rule
[zn] (A(z) +B(z)) = [zn]A(z) + [zn]B(z)
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Product rule

[zn]A(z)×B(z) =

n∑
k=0

(
[zk]A(z)

)
×
(
[zn−k]B(z)

)
Binomial theorem Let n and k be positive integers.

[zn](1 + z)r =

(
r

n

)
=

r!

(r − n)!n!
.

Extended binomial theorem Let k be a positive integer, and r be a real number. Then define(
r

k

)
:=

r(r − 1)(r − 2) . . . (r − k + 1)

k!
.

Then
[zk](1 + z)r =

(
r

k

)
.

A Useful Binomial Formula(
−r
k

)
=

(−r)(−r − 1) . . . (−r − k + 1)

k!

= (−1)k
(
r + k − 1

r − 1

)
= (−1)k

(
r + k − 1

k

)
.

Example (Catalan numbers).
The generating function 1−

√
1−4z
2z is a “famous” generating function. The coefficients are called Catalan

numbers, and we will revisit them shortly as a fundamental counting sequence.

[zn]
1−
√
1− 4z

2z
= −1

2
(−4)n[zn](1 + z)1/2

= −1

2
(−4)n

(
1/2

n

)
=
−(−4)n

2

1/2(1/2− 1)(1/2− 2) . . . (1/2− n+ 1)

n!

=
−(−4)n

2
(1/2)n(−1)n−1 1 · 1 · 3 · 5 . . . (2n− 3)

n!

= 2n−1
1 · 1 · 3 · 5 . . . (2n− 3)

n!
· (n− 1)!

(n− 1)!︸ ︷︷ ︸
=1

=
1 · 1 · 3 · 5 · · · (2n− 3) ·

2n−1(n−1)!︷ ︸︸ ︷
(2 · n) · (2 · (n− 1)) · (2 · 1)

n!(n− 1)!

=
(2n− 2)!

(n− 1)!(n− 1)!n

=

(
2n− 1

n− 1

)
1

n

We will encounter this generating function more than once in this class. This generating function,
as we shall see, is ubiquitous in combinatorics.

Exercise. Go to the web page: http://oeis.org/ This is the Online Encyclopedia of Integer sequences.
The first few terms of this sequence are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862. Enter them into the
search engine and find some combinatorial interpretations of these numbers.
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4 A sampling of counting sequences and generating functions
A An A(z)
Permutations n!

∑
n!zn

All simple, labelled graphs 2(
n
2)

∑
2(

n
2)zn

Binary words 2n 1
1−2z

Balanced parentheses
(
2n
n

)
1

n+1
1−
√
1−4x
2

4.1 Advanced Ideas
• Asymptotic Analysis. The values for which A(x) is not defined can give us much information

about the asymptotic growth of the coefficient. Consider A(x) = 1
1−2x =

∑
2nxn. The coefficient

an grows like 2n. Remark that A(x) is not defined at x = 1/2. In fact, very often we can formalize
a connection between the smallest singularity of the formal power series ρ (roughly, the smallest
value for which A(x) is not defined) and the growth of an: an ≈ 1/ρn. Again, complex analysis is
fundamental in this remarkable theory.
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