
Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 8 Lexicographic generation

Lexicographic generation

Contents
1 Introduction to generation and random generation 1

1.1 Features we might want in an exhaustive generation algorithm 1
1.2 What about random generation? . 1

2 Lexicographic ranking and unranking 2
2.1 Binary strings . 3
2.2 Bijection to subsets . 3
2.3 k-subsets . 3

1 Introduction to generation and random generation
Two things we might want to do given a combinatorial class A would be to generate all elements of An

or to generate a random element of An.
What does it mean to generate something at random? For a combinatorial class A, we want to

describe a process (e.g. algorithm) that takes as input n, and outputs an object α from A such that any
element has probability 1

An
of being generated. We call this Uniform generation.

1.1 Features we might want in an exhaustive generation algorithm
• We might want to be able to generate the elements of An sequentially, so that we can step from

one to the next. That is we might want a successor function which takes one element of An and
gives the next one in the order. This is useful if we want to iterate through all elements of An and
do something with each one.

• Given an object in An we might want to be able to determine the position of this object in the
order, that is we might want a ranking function. We also might want to be able to determine the
element in position i, that is we might want an unranking function

We would want to be able to do these things efficiently.

Definition. Let S be a finite set. A rank function is a bijection

rank : S → {0, 1, . . . , |S| − 1}

The corresponding unrank function is the inverse bijection

unrank : {0, 1, . . . , |S| − 1} → S

So rank(s) = i if and only if unrank(i) = s.
If we have a good unranking function we can generate a random element by first generating a

random element of {0, . . . , ‖S| − 1} and then unranking. If we have a good ranking and unranking
function we can generate a successor function by successor(c) = unrank(rank(c) + 1). In both cases
other approaches might be more efficient.

1.2 What about random generation?
Why would we want to do random generation?

• To get a sense of what the objects in a given class “look” like on average: estimate parameters like
average depth of a tree; average number of cycles in a permutation etc.

• To test a hypothesis about the class using an experimental method;

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 8 Lexicographic generation

• To feed as input into an algorithm to test the algorithm.

A random labelled binary tree on 200 nodes:

Hallmarks of a good random generation scheme

Correct Each element of size n is generated with equal probability.

Efficient How long does it take to generate an element of size n as a function of n?

Space Efficiency How much space does it take to generate an element

Ease of implementation How long would it take to actually code the algorithm?

Re-usability Are there optimizations possible if I am going to run the algorithm multiple times?

Generalizability Is this part of a wider framework, or simply an adhoc solution applicable to a single
problem?

Strategies

1. Consider simple models like binary strings, and make a direct argument;

2. Reduce the random generation to a very simple model via a bijection;

3. Surjective method: Find a simpler class that is in a k to one correspondence– uniform generation
is still preserved;

4. Ranking/unranking: Order all An elements. Generate uniformly a random number k between 1
and An, and determine the k-th element.

5. Rejection method: Generate a larger set and then filter the output;

6. Recursive method: Decompose the object by the counting probabilities

7. Markov method: use Markov chains;

8. ...

2 Lexicographic ranking and unranking
(see Donald Kreher and Douglas Stinson, Combinatorial Algorithms, chapter 2 for a reference on this
material)

Definition. Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm) be distinct lists of integers. A < B in
lexicographic order, if a1 = b1, . . . , ak−1 = bk−1 and either ak < bk or n = k − 1 and m ≥ k.

For example (1, 2, 2) < (2, 1), (1, 2, 2) < (1, 3, 1), (1, 2, 2) < (1, 2, 2, 1). This is the usual dictionary
ordering on words using alphabetical order on the letters (hence the name).

If we can represent our combinatorial objects as lists, then we can use lexicographic order to order
them, and from that get successor, rank, and unrank functions.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 8 Lexicographic generation

2.1 Binary strings
Binary strings are simple enough to directly do random generation. Let us represent a binary string of
length n by an array of length n with entries 0 or 1. Assume we have a random number generator.

Maple
> R:=rand(0..1); # picks a random integer in the range 0..1, i.e. picks 0 or 1
> Bin:= proc(n)
> for i from 1 to n do :
> A[i]:= R();
> od;
> return (seq(A[i], i=1..10));
> end proc;

Each string has probability (0.5)n of being generated, so it is uniform. There is one call made for
each n, so we say that it is linear in n. It is quite easy to implement, as we see.

Binary strings can also be lexicographically ordered since they are lists of 0s and 1s. It will be
handiest if we do reverse lexicographic order (so start at the right), because then lexicographic order
corresponds exactly to the order given by interpreting the binary string as a binary number. Conceptu-
ally ranking and unranking is just converting from a binary string to a binary number and back.

So we have
Algorithm: RankBin

input: n (length of word), w (word)
r = 0
for i from 1 to n

if w(i) = 1
r = r+2ˆi

output: r

Algorithm: UnrankBin
input: n (length of word), r (rank)
for i from 1 to n

if r is congruent to 1 mod 2
b(i) = 1
r = floor(r/2)

output: b

2.2 Bijection to subsets
Now, let us apply a bijection. Let S be a set of size n. Imagine we want to generate a subset of S such
that every subset is equally probable. How do we do it? Let us use a bijection to binary strings:

1. Order all elements: S = {s1, s2, . . . , sn};

2. Generate a random binary string β = (β1, β2, . . . , βn)

3. Create the subset {si : βi = 1}.

2.3 k-subsets
In the language of subsets it is natural to ask about ranking/unranking/randomly generating subsets
of size k of {1, . . . , n}.

We can also give these a lexicographic order, for example, list the elements of the subset from
smallest to largest, and then use lexicographic order on these lists.

For example the subsets of size 3 of {1, 2, 3, 4, 5} in this order are

{1, 2, 3}, {1, 2, 4}, {1, 2, 5},{1, 3, 4}, {1, 3, 5}, {1, 4, 5}
{2, 3, 4}, {2, 3, 5},{2, 4, 5}, {3, 4, 5}

Using this we can get a successor function

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 8 Lexicographic generation

Algorithm: SuccessorkSubset
input: L (current k subset as a list in increasing order), k, n
Lnew = L
i = k
while (i >= 1) and (L(i) = n-k+i)

i=i-1
if i=0

return no successor (L was the last in the order)
else

for j from i to k
Lnew(j) = L(i) + 1 + j - i

return Lnew

To rank and unrank we need to count how many elements preceed a given one. Namely we need

Proposition. Let {n1, . . . , nk} ⊆ {1, 2, . . . , n} with n1 < n2 < · · · < nk. Write L = (n1, . . . , nk). Then

rank(L) =
k∑

i=1

ni−1∑
j=ni−1+1

(
n− j
k − i

)

Proof. There are
(
n−(ni+`)
k−i−1

)
k-subsets (as lists in increasing order) beginning with n1, n2, . . . ni, `. For

` < ni+1 all such subsets preceed L in lexicographic order. Summing these completes the proof.

From this we have
Algorithm: RankkSubset

input: L (current k subset as a list in increasing order), k, n
r = 0
L(0) = 0
for i from 1 to k

if L(i-1)+1 <= L(i)-1
for j from L(i-1)+1 to L(i)-1
r = r + binom(n-j,k-i)

output: r

Algorithm: UnrankkSubset
input: r (rank), k, n
j = 1
for i from 1 to k

while binom(n-j,k-i) <= r
r = r - binom(n-j,k-i)
j = j+1

T(i) = j
j = j+1

output: T

Successor is O(k) in the worst case, and the other two algorithms are each O(n) in the worst case.
We can do better and rank in O(k). What we need to do is use the reverse lexicographic order again.
Call this the corank, and apply it to lists in decreading order

Proposition. Let {n1, . . . , nk} ⊆ {1, 2, . . . , n} with n1 < n2 < · · · < nk. Write L = (nk, . . . , n1). Then

corank(L) =
k∑

i=1

(
nk−i+1 − 1

k − i+ 1

)

Proof. There are
(
nk−i+1−1
k−i+1

)
lists which begin with nk, nk−1, . . . , nk−i+2 and have all remaining elements

less than nk−i+1. All of these lists comes before L in the order, and so summing we get the result.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 8 Lexicographic generation

Proposition. Let {n1, . . . , nk} ⊆ {1, 2, . . . , n} with n1 < n2 < · · · < nk.
Let L = (n1, n2, . . . , nk) and L̃ = (n+ 1− n1, n+ 1− n2, . . . , n+ 1− nk). Then

rank(L) + corank(L̃) =
(
n

k

)
− 1

Proof. Suppose (n1, n2, . . . , nk) < (m1,m2, . . . ,mk) in lexicographic order, then (n+1−n1, . . . , n+1−nk) >
(n+1−m1, . . . , n+1−mk) in lexicographic order. So given L, for every other k-subset M either L > M
or L̃ > M̃ . Therefore rank(L) + corank(L̃) equals the number of k-subsets other than L itself.

From this we can build
Algorithm: Rank2kSubset

input: L (current k subset as a list in increasing order), k, n
r = 0
L(0) = 0
for i from 1 to k

r = r + binom(n-L(i), k+1-i)
output: binom(n,k) - 1 - r

This algorithm is O(k).

Exercise. Can you make a similar Unrank2kSubset? What is its runtime?

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 5/5

