SIMON FRASER UNIVERSITY
DEPARTMENT OF MATHEMATICS

Midterm
Math 343 Spring 2013
Instructor: Dr. Yeats

February 21, 2013

Name: AV\S WEVS (please print)
family name given name
SFU email: @sfu.ca
SEFU-email
Signature:
Instructions:

(1) Fill in your information above.
(2) This test has 9 questions. Complete any 8 questions. Please indicate
which question you do NOT want marked:

If you do not indicate anything the first answered ones will be marked.
(3) Answer in the spaces provided; use the back if necessary. Justify your an-
swers.
(4) No calculators, books, papers, or electronic devices shall be within the reach
of a student during the examination.
(5) During the examination, communicating with, or deliberately ex-
posing written papers to the view of, other examinees is forbidden.




(1) (5 points) Let exp(x) be the formal power series
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Prove that
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as formal power series.
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(2) We say an integer composition ny +ng + ...+ ng = n is a palindrome if n; 1 = ng_;
for 0 <i < k/2.

(a) (2 points) Let C; be the class of integer compositions which have an even
number of parts and are palindromes. Give a specification for C;.
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(b) (2 points) Let C be the class of all integer compositions which are palindromes.
Give a specification for C.
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(¢) (1 point) Give an expression for the generating function of C.
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(3) Let N be the following combinatorial class. The objects of size n of this class are
circles with 2n points and n chords joining the points so that no two chords cross or
share an endpoint. For example the objects of size 3 are
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(a) (2 points) Fix one of the points and imagine removing the chord incident to
that point. This decomposes the diagram into two halves. Using this idea give
a specification for N
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(b) (2 points) Find [z"|N(z).
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(¢) (1 point) What is anotBer comﬁgnatorial class we've seen where these same
numbers appear?
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(4) (a) (2 points) Let F(x) be a formal Laurent series. Prove that
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(b) (3 points) Let k be an integer with k& # —1. Let G(x) be a formal Laurent
series. Prove that p
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(5) Let T be the class of roggggktrees with red and blue verticesg{‘l}ge each red vertex
has an even number of hlae children and an odd number of %ed children, and each
blue vertex has at most 4 children of any colour.

(a) (3 points) Give a specification for T
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(b) (1 point) What is the dependency digraph of your specification?
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(c¢) (1 point) What can you say about the colours of the leaves of a tree in 77
M He \own we U bacane
w8 Rans Whweve  an o&& r\wv\a&/ OQ LLQ,
CL\\. \J LN QA& §0 N \au L:W\“ m%
heve ot lecek oo SNV ad o

oV & (\Og' 5 ng\\A%)



(6) Let B be the combinatorial class of rooted trees where exactly one vertex has more
than 1 child, and all the children of this vertex are leaves. Such trees look like brooms.

(a) (3 points) Show that B is regular.
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(b) (2 points) Give a class of words with the same counting sequence as B.
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(7) (5 points) Rank the subsets of size k of {1,2,...,n} by listing the elements of each
subset in decreasing order and then ordering the subsets lexicographically. As in class
call this the corank. Let L = (ng,ng_1,...,n1) be such a subset in decreasing order.
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(8) (5 points) Find the list given by the Priifer correspondence applied to the tree
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(9) (5 points) Given a permutation
o:{1,2,....n} = {1,2,...,n}
represent o is as the list of its values
(0(1),0(2),...,0(n))
Order the permutations of {1,2,...,n} by ordering these lists lexicographically.

Write pseudocode to describe an algorithm which takes n and a permutation o of
size n and returns the next permutation in this order.
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