Math 800, Commutative Algebra, Lecture 15

Karen Yeats (Scribe: Yue Zhao)

October 25, 2013

1 Proving theorem B

Theorem B: If R is an affine domain over a field F then $KdimR = trdeq_F R$.

Proof. By induction on $n = trdeg_F R$. n = 0 follows from theorem A. Take n > 0, by Noether normalization R is integral over $R_0 = F[b_1, b_2, \ldots, b_n]$ and $R_0 \cong F[\lambda_1, \lambda_2, \ldots, \lambda_n]$. We have that every maximal ideal of R_0 has height $\geq n$ so $KdimR_0 \geq n$ and integral extensions preserve Krull dimension so $KdimR \geq n$. Now suppose we have $P_0 \supseteq P_1 \supseteq \cdots \supseteq P_n \supseteq 0$ a chain in $Spec(R_0)$ which has length > n let $\overline{R} = R_0/P_n$, so $trdeg\overline{R} < n$. So by induction $Kdim\overline{R} < n$ but $P_0/P_n \supseteq P_1/P_n \supseteq \cdots \supseteq P_n/P_n = 0$ is a chain of length n in $Spec(\overline{R})$.

2 Chain conditions and modules

For the rest of today R not necessary commutative.

Definition. Let S be a poset, S satisfies the ascending chain condition (ACC) if there is no infinite strictly ascending chain in $S s_1 < s_2 < \cdots$, equivalently any weakly ascending chain in $S s_1 \le s_2 \le \cdots$ eventually stabilizes. i.e. $\exists n \ s.t \ s_n = s_{n+1} = \cdots$.

S satisfies the descending chain condition (DCC) if there is no infinite strictly descending chain in $S \ s_1 > s_2 > \cdots$, equivalently any weakly descending chain in $S \ s_1 \geq s_2 \geq \cdots$ eventually stabilizes. i.e. $\exists n \ s.t \ s_n = s_{n+1} = \cdots$. In the case M is a left R-module and $\mathcal{L}_R(M)$ is the lattice of submodules. Then say M is Noetherian(Artinian) if $\mathcal{L}_R(M)$ satisfies ACC(DCC).

Property. Let S be a poset,

- (1) S satisfies ACC iff every nonempty subset of S has a maximal element
- (2) S satisfies DCC iff every nonempty subset of S has a minimal element

Proof. (1) \Leftarrow : Suppose we have $s_1 \leq s_2 \leq \cdots$ an ascending chain in S, consider $\{s_1, s_2, \ldots\} \subseteq S$ this has a maximal element say s_i . But $s_i \leq s_{i+1} \leq \ldots$ so $s_i = s_{i+1} = s_{i+2} = \ldots$

 \Rightarrow : Suppose there is a subset $S_0 \subseteq S$ which doesn't have a maximal element. Take $s_1 \in S_0$, given $s_1 < s_2 < \cdots < s_k \in S_0$ since s_k is not maximal in S_0 , $\exists s_{k+1} \in S_0$, $s_k < s_{k+1}$ this builds an infinite strictly ascending chain contradicting ACC.

(2) same by flipping \leq_S i.e by dual poset.

Property. Suppose $N \subseteq M$ submodule,

- (1) M is Noetherian iff N is Noetherian and M/N is Noetherian.
- (2) M is Artinian iff N is Artinian and M/N is Artinian.

Proof. (1) \Rightarrow : Any infinite ascending chain in N is also infinite ascending chain in M so N is Notherian. An infinite ascending chain in M/N looks like $M_0/N \subseteq M_1/N \subseteq M_2/N \subseteq \cdots$. Then $M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$ is an infinite ascending chain in M so it eventually stabilizes, so $M_0/N \subseteq M_1/N \subseteq M_2/N \subseteq \cdots$ stabilizes.

 \Leftarrow : let $M_0 \subseteq M_1 \subseteq \cdots$ be an ascending chain of submodules of M. Then $M_0 \cap N \subseteq M_1 \cap N \subseteq \cdots$ is an ascending chain of submodules of N and hence stabilizes. Also $(M_1 + N)/N \subseteq (M_2 + N)/N \subseteq \cdots$ is an ascending chain of submodules of M/N and hence stabilizes. Take i large enough that both these chains stablized. So $M_i \cap N = M_{i+1} \cap N$ and $(M_i + N)/N = (M_{i+1} + N)/N$ but modularity of modules says

$$M_{i} = M_{i} + (N \cap M_{i})$$

$$= M_{i} + (N \cap M_{i+1}) = (M_{i} + N) \cap M_{i+1}$$

$$= (M_{i+1} + N) \cap M_{i+1}$$

$$= M_{i+1}$$

So M is noetherian. (2) The same proof.

Corollary. Let M be a left R-module if M is Artinian and Noetherian then M has a composition series.

Proof. Given any nonzero module M_i consider the set of proper submodules of M_i . This has a maximal element M_{i+1} so M_i/M_{i+1} is simple. Iterating we get $M = M_0 \supseteq M_1 \supseteq \cdots$ and this terminates by Artinianess.

Property. Let M be an left R module, M is Noetherian iff every submodule of M is finitely generated.

Proof. \Leftarrow : Take $M_0 \subseteq M_1 \subseteq \cdots$ chain of submodules of M. $\bigcup M_i$ is finitely generated so there is some j such that all the generators (finitely many) are in M_j , so $M_j \subseteq M_{j+1} \subseteq \cdots \subseteq \bigcup M_i \subseteq M_j$ thus $M_j = M_{j+1} = \cdots$ \Rightarrow : Say N is a submodule which is not finitely generated. Consider the set of finitely generated submodules of N. This is nonempty since it contains 0. So it contains a maximal element call it N', $N' \subseteq N$ since N is assumed not finitely generated. Take $a \in N - N'$ then N' + Ra is submodule of N and is finitely generated and properly contains N' contradicting the maximality of N'.

3 Noetherian and Artinian rings

Definition. A ring R is left(right) Noetherian if R is Noetherian as a left(right) R module. A ring R is left(right) Artinian if R is Artinian as a left(right) R module.

A ring R is Noetherian(Artinian) if it is both left and right Noetherian(Artinian). For R commutative left Noetherian(Artinian) and right Noetherian(Artinian) are the same.

Note. (rephrasing one of the module results) A ring R is left Noetherian iff every left ideal is finitely generated.

Property. (1) Let R be a left Noetherian ring then every finitely generated left R-module is Noetherian.

(2) Let R be a left Artinian ring then every finitely generated left R-module is Artinian.

Proof. (1): Any such module M has the form $M \cong R^{(n)}/K$ where K is a submodule of $R^{(n)}$. It suffice to show $R^{(n)}$ is Noetherian. Prove this by induction on n.

n=1, given. Take n>1, $R^{(n)}/R\cong R^{(n-1)}$ so $R^{(n-1)}$ is Noetherian by induction and R is given Noetherian. So $R^{(n)}$ is Noetherian. \square

A theorem we won't prove.

Theorem. (Corollary of Hopkins-Levitzki)

All left Artinian rings are left Noetherian.

Example. (1) Let F be a field viewing F as a ring. Then F is both Noetherian and Artinian.

- (2) Let V be a vector space over a field viewing as a module. V is Noetherian iff V is finite dimensional iff V is Artinian.
- (3) R a PID. Since every ideal is cyclic hence finitely generated, so R is Noetherian.
- (4) $R = F[\lambda_1, \lambda_2, ...]$ is not Noetherian since $0 \subseteq \langle \lambda_1 \rangle \subseteq \langle \lambda_1, \lambda_2 \rangle \subseteq \cdots$.
- (5) Fix p prime, let $M = \{\frac{m}{n} : n \text{ is a power of } p\}$ viewing M as a \mathbb{Z} -module (i.e an abelian group). Let $N = M/\mathbb{Z}$ suppose K is a submodule of N, if $\frac{m}{n} + \mathbb{Z} \in K$ with g.c.d(m,n) = 1. Write am + bn = 1 so $a(\frac{m}{n} + \mathbb{Z}) = \frac{1}{n} \frac{bn}{n} + \mathbb{Z} = \frac{1}{n} + \mathbb{Z}$. Say $\frac{1}{p^a} + \mathbb{Z} \in K$, $\frac{1}{p^b} + \mathbb{Z} \in K$ with a < b then $p^{b-a}(\frac{1}{p^b} + \mathbb{Z}) = \frac{1}{p^a} + \mathbb{Z}$ so every nonzero submodule of N is generated by the elements of the form $\frac{1}{n} + \mathbb{Z}$. We have a chain $(\frac{1}{p} + \mathbb{Z})N \subsetneq (\frac{1}{p^2} + \mathbb{Z})N \subsetneq \cdots$ thus n N is not Noethe-

Given a set of submodules of N take the minimum denominator of generators, this generates the minimal element of the set. Thus N is Artinian.

4 Hilberts Basis theorem

Theorem. (Hilberts basis theorem)

If R is a left Noetherian ring then the polynomial ring $R[\lambda]$ is also left Noetherian.

Proof. Suppose $I \subseteq R[\lambda]$ is a left ideal take $f_1 \neq 0$, $f_1 \in I$ of least degree proceeding inductively on i, for $i \geq 1$, $\langle f_1, f_2, \ldots, f_i \rangle = I$ then we are done. If not then pick $f_{i+1} \in I \setminus \langle f_1, \ldots, f_i \rangle$ of least degree. Let a_i be the leading coefficient of f_i . Since R is Noetherian so $\langle a_1, a_2, \ldots \rangle \subseteq R$ generated by a_1, \ldots, a_m . Claim f_1, \ldots, f_m generates I. Suppose not, $a_{m+1} = \sum_{i=1}^m c_i a_i$ so let $g = \sum_{i=1}^m c_i f_i \lambda^{(degf_{m+1} - degf_i)}$ by construction $degf_{m+1}$

 $a_{m+1} = \sum_{i=1}^{n} c_i a_i$ so let $g = \sum_{i=1}^{n} c_i f_i \lambda^{(degf_{m+1} - degf_i)}$ by construction $degf_{m+1} - degf_i \ge 0$. Note $f_{m+1} - g$ has degree strictly lower than f_{m+1} but $f_{m+1} - g \not\in f_1, \ldots, f_m > \text{contradicting the choice of } f_{m+1}$. Result follows. \square

Corollary. Every affine algebra is Noetherian.

Proof. An affine algebra is of the form $F[\lambda_1, \ldots, \lambda_m]/A$, it suffices to show $F[\lambda_1, \ldots, \lambda_m]$ is Noetherian which is true by Hilberts basis theorem applied inductively.