COMMUTATIVE ALGEBRA, FALL 2013

ASSIGNMENT 1 SOLUTIONS

(1) We need to assume \mathcal{L} has a 0 , but we shouldn't have the 0 condition in the definition of filter; instead the question should ask that every proper filter is contained in an ultrafilter.

Let F be a proper filter of \mathcal{L}. Let \mathcal{A} be the set of all proper filters containing F. \mathcal{A} is nonempty since $F \in \mathcal{A}$. Let \mathcal{S} be a chain in \mathcal{A}.

I claim that $\bigcup \mathcal{S} \in \mathcal{A}$.
First note that if $a \in \bigcup \mathcal{S}$ then $a \in G$ for some filter G in \mathcal{S}, so if we take any $b \geq a, b \in \mathcal{L}$ then $b \in G$ and hence $b \in \bigcup \mathcal{S}$.

Next take $a, b \in \bigcup \mathcal{S}$, say with $a \in G, b \in H, G, H \in \mathcal{S}$. Since \mathcal{S} is a chain wlog $G \subseteq H$ and so $a, b \in H$ and hence $a \wedge b \in H$ so $a \wedge b \in \bigcup \mathcal{S}$.

Next note that each element of \mathcal{S} is proper so none contain 0 . Thus their union does not contain 0 and so their union is also proper. Furthermore each element of \mathcal{S} contains F and so their union also contains F.

Thus $\bigcup \mathcal{S} \in \mathcal{A}$.
So by Zorn's lemma \mathcal{A} has a maximal element, which by definition is an ultrafilter containing F.
(2) Take A cofinite. Take B with $A \subseteq B$. Then $S \backslash B \subseteq S \backslash A$ which is finite, so $S \backslash B$ is finite, and so B is cofinite.

Take A and B cofinite. Then $S \backslash(A \cap B)=(S \backslash A) \cup(S \backslash B)$ which is finite since the union of two finite sets is finite. So $A \cap B$ is cofinite.

Thus the cofinite sets form a filter.
(3) Say U is a principal ultrafilter on $\mathcal{P}(S)$. So there is some $A \subseteq S$ so that $U=\{B \subseteq$ $S: A \subseteq B\}$. Take a finite set C with $C \cap A \neq \varnothing$. This is always possible as we can just take C to be any singleton in A. Then $S \backslash C$ is in the cofinite filter but A is not a subset of $S \backslash C$ because $C \cap A \neq \varnothing$. So $S \backslash C$ is not in U.

Now say U is an ultrafilter on $\mathcal{P}(S)$ and say U does not contain the cofinite filter. Take B cofinite, with $B \notin U$ then by maximality of U there is an $A \in U$ such that $A \cap B=\varnothing$. Consequently $A \in S \backslash B$ which is a finite set. So U contains at least one finite set. Furthermore, given any two distinct finite sets of the same size in U their intersection contains fewer elements than either of them, so there is a unique finite set C of minimal size in $U . C \neq \varnothing$ since U is proper. I claim that U is principal generated by C. By definition of filter every superset of C is in U, and if any other set is in U, then its intersection with C is smaller than C and is in U which is a contraction proving the claim.
(4) Assume $N_{1} \subseteq N_{2}$ and K are submodules of a module M.

Let $f:\left(K \cap N_{2}\right) /\left(K \cap N_{1}\right) \rightarrow N_{2} / N_{1}$ and $g: N_{2} / N_{1} \rightarrow\left(K+N_{2}\right) /\left(K+N_{1}\right)$ be the natural maps.

Specifically, $f\left(n+K \cap N_{1}\right)=n+N_{1}$ for $n \in K \cap N_{2}$ and $g\left(n+N_{1}\right)=m+K+N_{1}$ for $m \in N_{2}$. Therefore $\operatorname{im} f=\left(K \cap N_{2}\right) / N_{1}$. Also if $n+N_{1} \in \operatorname{ker} g$ then $n \in K+N_{1}$ so $\operatorname{ker} g=\left(\left(N+N_{1}\right) \cap N_{2}\right) / N_{1}$.

So

$$
\begin{aligned}
\operatorname{im} f=\operatorname{ker} g & \Leftrightarrow\left(\left(K+N_{1}\right) \cap N_{2}\right) / N_{1}=\left(K \cap N_{2}\right) / N_{1} \\
& \Leftrightarrow\left(K+N_{1}\right) \cap N_{2}=\left(K \cap N_{2}\right)+N_{1}
\end{aligned}
$$

So the sequence in the problem being exact is equivalent to the modularity property.
(5) I'll do it as an element chase. Did anyone do it element-free?

Take $a \in B_{3}$. I want to show that $a \in \operatorname{im} g_{3}$. Take $b \in A_{4}$ with $g_{4}(b)=h_{3}(a)$ which is possible as g_{4} is an isomorphism. Then $0=h_{4}\left(h_{3}(a)\right)=h_{4}\left(g_{4}(b)\right)=g_{5}\left(f_{4}(b)\right)$ and so $f_{4}(b)=0$ since g_{5} is an isomorphism. So b is in the image of f_{3}, say $f_{3}(c)=b$. Consider $g_{3}(c)-a$. $h_{3}\left(g_{3}(c)\right)=h_{3}\left(f_{3}(c)\right)=h_{3}(a)$ so $h_{3}\left(g_{3}(c)-a\right)=0$. Therefore $g_{3}(c)-a$ is in the image of h_{2}, say $h_{2}(d)=g_{3}(c)-a$. Take $e \in A_{2}$ with $g_{2}(e)=d$ which is possible as g_{2} is an isomorphism. Then $g_{3}(c)-a=h_{2}\left(g_{2}(e)\right)=g_{3}\left(f_{2}(e)\right)$ so $a=g_{3}\left(c-g_{2}(e)\right)$ and so $a \in \operatorname{im} g_{3}$ as desired.

Now take $a \in \operatorname{ker} g_{3}$. Then $0=h_{3}\left(g_{3}(a)\right)=g_{4}\left(f_{3}(a)\right)$ and so $f_{3}(a)=0$ since g_{4} is an isomorphism. Thus there is a b with $f_{2}(b)=a$. Then $0=g_{3}\left(f_{2}(b)\right)=h_{2}\left(g_{2}(b)\right)$ so $g_{2}(b) \in \operatorname{ker} h_{2}$. Thus there is a c with $h_{1}(c)=g_{2}(b)$. Since g_{1} is an isomorphism there is a d with $g_{1}(d)=c$, so $g_{2}(b)=h_{1}\left(g_{1}(d)\right)=g_{2}\left(f_{1}(d)\right)$. But g_{2} is an isomorphism so $b=f_{1}(d)$. Thus $a=f_{2}(b)=0$ as desired.
(6) This was harder than I thought it would be (at least finding one not making one up). Maybe some of you came up with better ones. I found one at http://mathoverflow. net/questions/1083/do-good-math-jokes-exist: "How are Goethe's Faust novels like isomorphisms of sets? Dey're de monic epics."
(7) Say $K=\operatorname{ker} f$ in the module sense. Let $i: K \rightarrow A$ be the natural injection. Then $f i=0$, and if $\alpha: K^{\prime} \rightarrow A$ monic with $f \alpha=0$ then $\alpha\left(K^{\prime}\right) \subseteq K$ so $\alpha K^{\prime} \rightarrow K$ is the unique map from K^{\prime} to K which satisfies

Say $k: K \rightarrow A$ is a categorical kernel of f. Then $f(k(K))=0$ so $k(K)$ is a subset of the module-theoretic kernel, $\operatorname{ker} f$ of f. But if $k(K)$ is strictly smaller than ker f then there is no map from $\operatorname{ker} f$ to K which satisfies

(8) f is a kernel, say of g, so

Say coker $f: A \rightarrow D$, then by the universal property of cokernels there exists a unique map $h: D \rightarrow B$ so that the following commutes

Now suppose we have $j: K^{\prime} \rightarrow A$ monic with $(\operatorname{coker} f) j=0$. Then $h j=$ $h(\operatorname{coker} f) j=0$ so by the universal property of kernels applied to f we have a unique map $K^{\prime} \rightarrow K$ making the following diagram commute:

