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HOMEWORK 2 SOLUTIONS

MATH 818, FALL 2010

We have
f:P? — P?

(1'1 N o) I 133) — (1'1.’172 P XoTa : Qiol'l)

This is a rational map, and it is regular unless x1z5 = 0, zgxs = 0, zox; = 0. That
is f is regular except at (0:0:1), (0:1:0), and (1:0:0). f is its own inverse and
hence f is a birational map. f is an isomorphism on P*\V (x1) UV (x5) UV (x3) since
if no coordinate is 0 then no coordinate is zero after applying f.

KIAY] = k[t]. K[V (y* = 2°)] = klz,y]/(y* = %), and f* : K[z, y]/(y* = 2°) = k[t] by
f(p(z,y)) = p(t?,13). So the question is asking if k[t] is integral over k[t ¢?]. This
is the case because we need only to check that ¢ is integral over k[t?, 3] which it is
since it satisfies the monic polynomial T2 = ¢2.

Embed A" in P". Let P’_! be the points at infinity. Let £ = LNP". Then projection
parallel to L in A" is the same as projecting away from E in P" (This is because
lines paralell to L in A" are precisely lines in P" which go through F.). Thus from
Theorem 1.5.7 of Shafarevich we know that ¢y, is finite when £ & X. So

Scxnp;t.

On the other hand suppose E € X. Let t,...,t. be projective coordinates on P’
with P’>! being ¢, = 0. Use a projective automorphism (linear even!) to make
L =V(ty,...,t,.—1) and the (r — 1)-dimensional subspace Y not containing L equal
V(t,). Then E=(0:0:---:1) and

o X =Y

(tl, R 7tr) — (tl, R ,t,ﬂfl)
Suppose ¢y, were finite. Consider ¢, as a function on X; then ¢, satisfies an equation
tFap th o+ ag =0

in k[Y]. But E € X means t, tends to infinity on X. So consider y € Y, z € ¢7'(y);
we have

tr(2)" + ax (W)t ()" 4+ ao(y) =0
Choosing z and y to let ¢, tend to infinity we get a contradiction, so ¢, is not finite.
Finally if r =2 and X = V(zy = 1) then X = V(xy = 2?), and so S = X NP =
{(1:1:0)}.

Assume the characteristic of & is 0.



(a)

(Y +1)°

(d)

Solve
Y3 Y24+ X3 - X2 4+3Y?°X +3XY +2XY =0
3Y? —2Y +6YX +3X?>+2X =0
3X? —2X +3Y? 4+ 6XY +2Y =0

Adding 0 = 3eq; — Yeqs — Xeqs = —X? —Y? +2XY so X +Y = 0. Subbing
X = —Y into the second equation gives Y = 0, and (0,0) satisfies all the
equations, so the only singular point is (0, 0).

Taking the lowest degree part we have —X?—Y?2+2XY = 0o (0,0) is a double
point and the only tangent line is Y = X.

Solve

Y4+ X' - X?Y? =0
4Y? —2X%Y =0
4X% —2XY? =0
The second equation gives Y = 0 or 2Y? = X?. The third equation gives X = 0
or 2X?=Y? Thus Y =0« X =0 and (0,0) is a solution to the system. The
other possibility is 2Y2 = X2 and 2X? = Y2 but these cannot be simultaneously
satisfied unless again X =Y = 0. Thus the only singular point is (0, 0).
This polynomial is homogeneous and its linear factors are 2X 4 Y (i & 1/3) thus
the point is a quadruple point and has those four tangent lines.
Solve
Y34 X2 —3X? —3Y?+3XY +1=0
3Y? —6Y +3X =0
3X? —6X +3Y =0
Adding 0 = 3eq; + (1 —Y)ega + (1 — X)egs = (X —1)(Y —1). So X =1 or
Y = 1. Subbing X = 1 into equation 3 gives Y = 1, and similarly starting with

Y =1, so we have one singular point (1, 1).
Translating the singular point to the origin

(X +1)P =3(X+1)2 =3V + 1) +3(X+1)(Y +1)+1=X>+V>+3XY

The lowest degree part is 3XY and so the point is a double point and the
tangents are (translating back) X =1 and Y = 1.
Solve
Y24 (X2 -5)(2X?-5)2=0
2Y =0
2X(6X% —25)(2X*—-5) =0

So from equation 2 Y = 0, and the only common roots of equation 2 and equation
1 with Y = 0 are 2X? = 5, that is X = 4+4/5/2. So the singular points are

\/_ 0) and ( \/_ 0).
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F, 3-8:

F, 3-13:

F, 3-20:

First take (1/5/2,0). Translating to the origin we get
V24 (X +4/5/2)° = 5)(2(X + /5/2)* — 5)

Fortunately we only need the lowest degree part: Y? — 100X?, and the lowest
degree part will be the same (translated) for the other singular point. Thus
both are double points with tangents (translated back) the appropriate two of
Y =+10(X £ +/5/2).

(a) Translate P and @ to the origin. Composing 7" with these two translations we
still get a polynomial map. Then FT(x,y) = F(Ti(z,y), To(z,y)). But T takes
the origin to the origin, so 77 and 75 both have no constant terms. Thus the
lowest degree part of F'7' has degree at least the lowest degree part of F.

(b) Continuing with the notation and assumtions above, write

with f; homogeneous of degree 7. As above applying T' cannot decrease degrees,
so the lowest degree part of F7 is the lowest degree part of fL. Thus only
the degree 1 part of F' plays a role in the multiplicities. Suppose the Jacobian
is invertible at the origin. Then the degree 1 part of F' is invertible with a
polynomial inverse L (of degree 1). And so mp(F) < mo(FT) < mp((FT)F) =
mp(F). Thus mg(FT) = mp(F).
(c) Using the example Fulton gives, mp(F) =1 and FT =Y — X* so mp(FT) = 1.

However the Jacobian is

2X 0

O

which is not invertible at the origin.
Translate P to the origin and take 0 < n < mp(F). Then m = (X,Y). Thus
m"™*1 /m™ is the vector space in k[F| generated by homogeneous polynomials of degree
n. But n < mp(F'), so F has no terms of degree less than or equal to n. Thus F
introduces no relations on m™*!/m". Therefore dimm™™!/m" =n + 1.

If P is a simple point then dimm/m? = 1 as n is sufficiently large for the theorem
(Theorem 2 in Fulton) to apply. If P is not a simple point then dimm/m? = 2 by
the above argument.

P is a simple point on F' so we are trying to show

ord5(G + H) > min{ord5(G), ord5(H)}.

But this is the ultrametric triangle inequality which is satisfied by ord. (For a proof,
suppose t is the uniformizer, and say t divides G exactly n times and H exactly m
times. Then certainly ¢t divides G + H min{m,n} times, and perhaps more if there
is cancellation.)

This does not hold if P is not a simple point on F' because we have the following
example. Let P = (0,0) and F =Y? - X?*(X +1). Let G=X+Y and H = X - Y.
Then

In(P,FNG) =In(P,V(X+Y)(X -Y)-X)NV(X+Y)) =In(P,V(X*)NV (X +Y)) = 3.

Similarly

In(P,FNH) =In(P,V(X+Y)(X-Y)-X*)NV(X -Y)) = In(P,V(X*)NV(X -Y)) = 3.
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But G+ H = 2X and
In(P,FNV(2X)) =In(P,V(Y*) NV (2X)) = 2.

which does not satisfy the inequality.
F, 5-3: (a) We have

Y?Z - X(X -22)(X+Z)=0
Y24 X2 —2XZ =0
Solving the second for Y2 and subbing into the first we get
Y3 X +2Z)=0
SoY =0o0r X =—-27Z. If Y =0 then we have
X(X-22)(X+Z)=0and X(X —22)=0
so we have the two points (0:0:1) and (2:0:1). If X = —2Z then we have
Y?X —82%=0and Y*+82% =0

so we have the two points (2 : 2¢/2 : —1) and (2 : —2v/2 : —1). Calculate the
intersection multiplicities:

(0:0:1): Dehomogenize with Z = 1. Let P = (0,0), calculate
m(P,V(Y?-X(X-2)(X+1)NV(Y?+ X(X —2)))
=In(P,V(X(X -2)(X+2)NV(Y*+ X(X - 2)))
=In(P,VX)NVY?+X(X -2)))+In(P, V(X —2)NV(Y? + X (X —2)))
+In(P,V(X +2)NV(Y? + X(X —2)))
=In(P,V(X)NV(Y*)+04+0
=2
(2:0:1): Dehomogenize with Z = 1. Let P = (2,0).
m(P,V(Y? - X(X -2)(X+1))NV(Y?+ X(X —2)))
=In(P,V(X(X -2)(X +2)NV(Y?+ X(X - 2)))
=0+In(PV(X-2)NV(Y*+ X(X —2)))+0
=In(P, V(X —2)NV(Y?)
=2
(2:2y/2: —1): Dehomogenize with Z = 1. Let P(—2: —21/2).

PV - X(X-2)(X+1)NV(Y?+ X(X —2)))
=In(P,V(X(X -2)(X+2)NV(Y?+ X(X - 2)))
=0+0+In(P, V(X +2)NV(Y? + X(X —2)))
=In(P, V(X +2)NV(Y?+38))
=In(P,V(X +2)NV(Y +2v2)) + In(P, V(X +2) NV (Y — 2V2))
=1



(2: —2V2: —1): By the same calculation as the previous point but with the last two terms
switched we get again an intersection multiplicity of 1.
(b) We have

(X2 +YHZ+X3+Y? =0
X34Y?—2XYZ =0

Subbing the second into the first we get Z(X? +Y? +2XY) =0s0 Z =0 or
X+Y =0. If Z=0 we have X? + Y3 = 0 so we get the points (1 : —1 : 0),
(1:—e?/3:0), (1: —e*/3:0). If X —Y =0 then we get 2Y2Z = 0 so we get
the new point (0 : 0 : 1). Calculate the intersection multiplicities. For the first
three cases dehomogenize with X = 1. That is, calculate

In(PV(Y*+1)Z+Y’+1)NV(Y?+1-2Y2))
=In(P,V(Y?+2Y + D)Z2)NV(Y? +1-2YZ))
=In(P,V(Z)NV(Y3+1-2YZ)) +2In(P,V(Y + )NV (Y +1-2Y 7))
=In(P,V(Z)NV(Y?+ 1)) +2In(P, V(Y + 1) NV (22))
=In(P,V(Z)NV(Y +1)) + In(P,V(Z) N V(Y 4 &*™/3))

+In(P,V(Z)NV (Y +e*™/3)) + 2In(P, V(Y +1) NV (22))
(1: =1:0): Let P =(—1,0), continuing the above calculation
m(PV(Y*+1)Z+Y*+1)NV(Y?+1-2YZ)=14+0+0+2=3
(1:—e2™/3:0): Let P = (—e?™/3,0).
mPV(Y*+1)Z+Y*+1)NV(Y?+1-2Y2)=0+1+0+0=1
(1:—em/3:0): Let P = (—e*™/3,0).
mPV(Y*+1)Z+Y?+1)NV(Y?+1-2YZ)=0+0+1+0=1
(0:0:1): This time dehomogenize with Z = 1. Let P = (0,0).
In(PV((X2+YH + X3+ Y)NV(XP+Y? - 2XY)) =4
since there are no common tangents.
(c) We have
YP - X(Y? - XZ)?=0
Vi4Y?Z - X?Z2=0
First consider Y = 0. Then X?Z? = ( so we have the points (1 : 0 : 0) and
(0:0:1) (and we can check that both work). Now consider Y = 1. We have
0=1-X(1-X2)?=1-X(1-2XZ+ X?*7?
0=1+2-X?2"

Subbing the second into the first we get 1 = X (2 — 2XZ + Z). Solving for Z
we get Z = (1 —-2X)/(X(1—2X))orl1—2X =0. If 1 # 2X, X # 0, then
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Z =1/X, but this does not satisfy the first equation. If 1 —2X = 0 then we get

ZQ
0=1+2-="
+ 4

So Z = 2 4 2+/2 giving the points (1 :2: 4 4+ 41/2).
Now calculate the intersection multiplicities
(0:0:1): Dehomogenize with Z = 1. Let P = (0,0). We have

In(P,V(Y® - XY*+ X?Y2 - X*)NV(Y*+Y? - X?))

=In(P,V(Y?(Y? - 2XY? - XY + X)) NV (Y*+Y? - X?)
=In(P,VY*)NV(=X*)+In(P,V(Y? - 2XY? - XY + X)) NV (Y* + Y3 - X?))

=44+ In(P,V(Y?-2XY? - XY + X)) NV(Y(Y? 4+ 2Y? - 2XY — X)))

=4+ In(P,V(X)NVY)+In(P,V(Y(Y?+Y?X —2X? - X)) NV(Y? +2Y? - 2XY — X))
=6+ 1+In(P,V(Y?+Y?X —2X2 - X)NV(Y? - Y2X +Y? +2X? — 2XY))

=74+2=9

(1:2:4+44/2): P is a smooth point of both curves so the intersection multiplicity is 1.
(1:0:0): By Bezout’s theorem this point must also have multipliciyty 9.
(d) We have

(X2 +YH2+YZ(3X*-Y?) =0

(X2+ V2P —4X2Y222 =0
If Y =0 then X = 0 and the point (0 : 0 : 1) works. Likewise if X = 0 then
Y = 0. Now let X = 1 and use Maple: get the six points (1 : £i : 0), (1 :

2
%@ : % (%) — 2%). Now calculate the intersection multiplicities.

First notice

In(P,V(X*+Y®2+YZ(BX?-Y?)NV((X?+Y?)? - 4X?Y?2?))
=In(P, V(X2 +Y?2+YZBX2-Y))NV(YZ((3X* - Y)(X?+Y?) +4X?Y 7))

(0:0:1): Dehomogenize with Z =1, P = (0,0). Continuing the above calculation

In(P,V((X2+ Y2+ Y(BX2-Y?)NV((X?+Y?)? —4X2Y?)

=In(P,V(XH)NV(Y)+In(P, V(X2 +Y?)? +Y(BX?> - YH))NV((3X* - Y*)(X? +Y?) +4X?Y))
=44+ In(P,V(YUAY (X2 +Y?) - 12X+ 3Y?)NV((BX2 - Y (X2 +Y?) +4X%Y))

=4+ In(P,V(Y)NV(EBXY) +In(P,VEAY (X2 +Y?) —5X2+3YH NV ((BX% - Y?)(X? +Y?) +4X°
=4+4+6=14



(1:4:0): Dehomogenize with X =1, P = (7,0).
In(P,V(1+Y?)?+YZB-YH)NV((1+Y??—-4Y?7%)
=In(P,V()NV(Y))+In(P,V((1+Y?*?)NV(Z))
+In(P,V(1+Y?)?*+YZB-Y)NV(B-YH(1+Y? +4Y 7))
=04+2+In(P,V(1+Y?2+YZB-Y?*)NV(B-Y?)(1+Y? +4Y 7))

for the last term translate Y <— Y — i get that the lowest degree terms are
in the first case —8iY + 4iZ and in the second case —4iZ so there are no
common tangents and P is a smooth point of each. Thus the intersection
multiplicity is 3.

(1:—i:0): Arguing as above we again get 3.

F, 5-6:

F, 5-22:

rest: By Bezout the remaining points each have multiplicity 1.

Without loss of generality P is the origin. Let f be the lowest degree part of F.
If fx # 0 then the lowest degree part of Fx is fx which has degree one less than
the degree of f, and hence mp(Fx) = mp(F) — 1. On the other hand if fx = 0
then the lowest degree part of F'x has degree at least the degree of f and hence
mp(Fx) > mp(F) — 1. Together this gives the result.

F is irreducible so F' and F'y have no common components. So by Fulton’s Corollary
1 to Bezout’s Theorem we have that

> mp(F)mp(Fx) < deg(F) deg(Fx) = n(n — 1)
P
Using the previous result we get

> mp(F)(mp(F) = 1) <> mp(F)mp(Fx) < n(n—1)

We get the most multiple points when each are double points. Let m be the number
of multiple points of F'. Then 2m < n(n —1) so m < n(n —1)/2.



