HOMEWORK 2 SOLUTIONS

MATH 818, FALL 2010

Sh, I.4.9: We have

$$
\begin{aligned}
f: \mathbb{P}^{2} & \rightarrow \mathbb{P}^{2} \\
\left(x_{1}: x_{2}: x_{3}\right) & \mapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)
\end{aligned}
$$

This is a rational map, and it is regular unless $x_{1} x_{2}=0, x_{0} x_{2}=0, x_{0} x_{1}=0$. That is f is regular except at $(0: 0: 1),(0: 1: 0)$, and $(1: 0: 0) . f$ is its own inverse and hence f is a birational map. f is an isomorphism on $\mathbb{P}^{2} \backslash V\left(x_{1}\right) \cup V\left(x_{2}\right) \cup V\left(x_{3}\right)$ since if no coordinate is 0 then no coordinate is zero after applying f.
Sh, I.5.7: $k\left[\mathbb{A}^{1}\right]=k[t] . k\left[V\left(y^{2}=x^{3}\right)\right]=k[x, y] /\left\langle y^{2}=x^{3}\right\rangle$, and $f^{*}: k[x, y] /\left\langle y^{2}=x^{3}\right\rangle \rightarrow k[t]$ by $f(p(x, y))=p\left(t^{2}, t^{3}\right)$. So the question is asking if $k[t]$ is integral over $k\left[t^{2}, t^{3}\right]$. This is the case because we need only to check that t is integral over $k\left[t^{2}, t^{3}\right]$ which it is since it satisfies the monic polynomial $T^{2}=t^{2}$.
Sh, I.5.8: Embed \mathbb{A}^{r} in \mathbb{P}^{r}. Let $\mathbb{P}_{\infty}^{r-1}$ be the points at infinity. Let $E=\bar{L} \cap \mathbb{P}^{r}$. Then projection parallel to L in \mathbb{A}^{r} is the same as projecting away from E in \mathbb{P}^{r} (This is because lines paralell to L in \mathbb{A}^{r} are precisely lines in \mathbb{P}^{r} which go through E.). Thus from Theorem I.5.7 of Shafarevich we know that ϕ_{L} is finite when $E \notin \bar{X}$. So

$$
S \subset \bar{X} \cap \mathbb{P}_{\infty}^{r-1}
$$

On the other hand suppose $E \in \bar{X}$. Let t_{0}, \ldots, t_{r} be projective coordinates on \mathbb{P}^{r} with $\mathbb{P}_{\infty}^{r-1}$ being $t_{0}=0$. Use a projective automorphism (linear even!) to make $L=V\left(t_{1}, \ldots, t_{r-1}\right)$ and the $(r-1)$-dimensional subspace Y not containing L equal $V\left(t_{r}\right)$. Then $E=(0: 0: \cdots: 1)$ and

$$
\begin{aligned}
\phi_{L}: X & \rightarrow Y \\
\left(t_{1}, \ldots, t_{r}\right) & \mapsto\left(t_{1}, \ldots, t_{r-1}\right)
\end{aligned}
$$

Suppose ϕ_{L} were finite. Consider t_{r} as a function on X; then t_{r} satisfies an equation

$$
t_{r}^{k}+a_{k-1} t_{r}^{k-1}+\cdots+a_{0}=0
$$

in $k[Y]$. But $E \in \bar{X}$ means t_{r} tends to infinity on X. So consider $y \in Y, x \in \phi_{L}^{-1}(y)$; we have

$$
t_{r}(x)^{k}+a_{k-1}(y) t_{r}(x)^{k-1}+\cdots+a_{0}(y)=0
$$

Choosing x and y to let t_{r} tend to infinity we get a contradiction, so ϕ_{L} is not finite.
Finally if $r=2$ and $X=V(x y=1)$ then $\bar{X}=V\left(x y=z^{2}\right)$, and so $S=\bar{X} \cap \mathbb{P}_{\infty}^{1}=$ $\{(1: 1: 0)\}$.
F, 3-2: Assume the characteristic of k is 0 .
(a) Solve

$$
\begin{aligned}
Y^{3}-Y^{2}+X^{3}-X^{2}+3 Y^{2} X+3 X^{2} Y+2 X Y & =0 \\
3 Y^{2}-2 Y+6 Y X+3 X^{2}+2 X & =0 \\
3 X^{2}-2 X+3 Y^{2}+6 X Y+2 Y & =0
\end{aligned}
$$

Adding $0=3 e q_{1}-Y e q_{2}-X e q_{3}=-X^{2}-Y^{2}+2 X Y$ so $X+Y=0$. Subbing $X=-Y$ into the second equation gives $Y=0$, and $(0,0)$ satisfies all the equations, so the only singular point is $(0,0)$.
Taking the lowest degree part we have $-X^{2}-Y^{2}+2 X Y=0$ so $(0,0)$ is a double point and the only tangent line is $Y=X$.
(b) Solve

$$
\begin{aligned}
Y^{4}+X^{4}-X^{2} Y^{2} & =0 \\
4 Y^{3}-2 X^{2} Y & =0 \\
4 X^{3}-2 X Y^{2} & =0
\end{aligned}
$$

The second equation gives $Y=0$ or $2 Y^{2}=X^{2}$. The third equation gives $X=0$ or $2 X^{2}=Y^{2}$. Thus $Y=0 \Leftrightarrow X=0$ and $(0,0)$ is a solution to the system. The other possibility is $2 Y^{2}=X^{2}$ and $2 X^{2}=Y^{2}$ but these cannot be simultaneously satisfied unless again $X=Y=0$. Thus the only singular point is $(0,0)$.
This polynomial is homogeneous and its linear factors are $2 X \pm Y(i \pm \sqrt{3})$ thus the point is a quadruple point and has those four tangent lines.
(c) Solve

$$
\begin{array}{r}
Y^{3}+X^{3}-3 X^{2}-3 Y^{2}+3 X Y+1=0 \\
3 Y^{2}-6 Y+3 X=0 \\
3 X^{2}-6 X+3 Y=0
\end{array}
$$

Adding $0=3 e q_{1}+(1-Y) e q_{2}+(1-X) e q_{3}=(X-1)(Y-1)$. So $X=1$ or $Y=1$. Subbing $X=1$ into equation 3 gives $Y=1$, and similarly starting with $Y=1$, so we have one singular point $(1,1)$.
Translating the singular point to the origin

$$
(Y+1)^{3}+(X+1)^{3}-3(X+1)^{2}-3(Y+1)^{2}+3(X+1)(Y+1)+1=X^{3}+Y^{3}+3 X Y
$$

The lowest degree part is $3 X Y$ and so the point is a double point and the tangents are (translating back) $X=1$ and $Y=1$.
(d) Solve

$$
\begin{aligned}
Y^{2}+\left(X^{2}-5\right)\left(2 X^{2}-5\right)^{2} & =0 \\
2 Y & =0 \\
2 X\left(6 X^{2}-25\right)\left(2 X^{2}-5\right) & =0
\end{aligned}
$$

So from equation $2 Y=0$, and the only common roots of equation 2 and equation 1 with $Y=0$ are $2 X^{2}=5$, that is $X= \pm \sqrt{5 / 2}$. So the singular points are $(\sqrt{5 / 2}, 0)$ and $(-\sqrt{5 / 2}, 0)$.

First take $(\sqrt{5 / 2}, 0)$. Translating to the origin we get

$$
Y^{2}+\left((X+\sqrt{5 / 2})^{2}-5\right)\left(2(X+\sqrt{5 / 2})^{2}-5\right)^{2}
$$

Fortunately we only need the lowest degree part: $Y^{2}-100 X^{2}$, and the lowest degree part will be the same (translated) for the other singular point. Thus both are double points with tangents (translated back) the appropriate two of $Y= \pm 10(X \pm \sqrt{5 / 2})$.
F, 3-8: (a) Translate P and Q to the origin. Composing T with these two translations we still get a polynomial map. Then $F^{T}(x, y)=F\left(T_{1}(x, y), T_{2}(x, y)\right)$. But T takes the origin to the origin, so T_{1} and T_{2} both have no constant terms. Thus the lowest degree part of F^{T} has degree at least the lowest degree part of F.
(b) Continuing with the notation and assumtions above, write

$$
F=f_{m}+f_{m+1}+\cdots+f_{n}
$$

with f_{i} homogeneous of degree i. As above applying T cannot decrease degrees, so the lowest degree part of F^{T} is the lowest degree part of f_{m}^{T}. Thus only the degree 1 part of F plays a role in the multiplicities. Suppose the Jacobian is invertible at the origin. Then the degree 1 part of F is invertible with a polynomial inverse L (of degree 1). And so $m_{P}(F) \leq m_{Q}\left(F^{T}\right) \leq m_{P}\left(\left(F^{T}\right)^{L}\right)=$ $m_{P}(F)$. Thus $m_{Q}\left(F^{T}\right)=m_{P}(F)$.
(c) Using the example Fulton gives, $m_{P}(F)=1$ and $F^{T}=Y-X^{4}$ so $m_{P}\left(F^{T}\right)=1$. However the Jacobian is

$$
\left[\begin{array}{cc}
2 X & 0 \\
0 & 1
\end{array}\right]
$$

which is not invertible at the origin.
F, 3-13: Translate P to the origin and take $0 \leq n<m_{P}(F)$. Then $\mathfrak{m}=\langle X, Y\rangle$. Thus $\mathfrak{m}^{n+1} / \mathfrak{m}^{n}$ is the vector space in $k[F]$ generated by homogeneous polynomials of degree n. But $n<m_{P}(F)$, so F has no terms of degree less than or equal to n. Thus F introduces no relations on $\mathfrak{m}^{n+1} / \mathfrak{m}^{n}$. Therefore $\operatorname{dim} \mathfrak{m}^{n+1} / \mathfrak{m}^{n}=n+1$.

If P is a simple point then $\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}=1$ as n is sufficiently large for the theorem (Theorem 2 in Fulton) to apply. If P is not a simple point then $\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}=2$ by the above argument.
F, 3-20: P is a simple point on F so we are trying to show

$$
\operatorname{ord}_{P}^{F}(G+H) \geq \min \left\{\operatorname{ord}_{P}^{F}(G), \operatorname{ord}_{P}^{F}(H)\right\}
$$

But this is the ultrametric triangle inequality which is satisfied by ord. (For a proof, suppose t is the uniformizer, and say t divides G exactly n times and H exactly m times. Then certainly t divides $G+H \min \{m, n\}$ times, and perhaps more if there is cancellation.)

This does not hold if P is not a simple point on F because we have the following example. Let $P=(0,0)$ and $F=Y^{2}-X^{2}(X+1)$. Let $G=X+Y$ and $H=X-Y$. Then

$$
\begin{aligned}
& \operatorname{In}(P, F \cap G)=\operatorname{In}\left(P, V\left((X+Y)(X-Y)-X^{3}\right) \cap V(X+Y)\right)=\operatorname{In}\left(P, V\left(X^{3}\right) \cap V(X+Y)\right)=3 \\
& \quad \text { Similarly } \\
& \operatorname{In}(P, F \cap H)=\operatorname{In}\left(P, V\left((X+Y)(X-Y)-X_{3}^{3}\right) \cap V(X-Y)\right)=\operatorname{In}\left(P, V\left(X^{3}\right) \cap V(X-Y)\right)=3
\end{aligned}
$$

But $G+H=2 X$ and

$$
\operatorname{In}(P, F \cap V(2 X))=\operatorname{In}\left(P, V\left(Y^{2}\right) \cap V(2 X)\right)=2 .
$$

which does not satisfy the inequality.
F, 5-3: (a) We have

$$
\begin{aligned}
Y^{2} Z-X(X-2 Z)(X+Z) & =0 \\
Y^{2}+X^{2}-2 X Z & =0
\end{aligned}
$$

Solving the second for Y^{2} and subbing into the first we get

$$
Y^{2}(X+2 Z)=0
$$

So $Y=0$ or $X=-2 Z$. If $Y=0$ then we have

$$
X(X-2 Z)(X+Z)=0 \text { and } X(X-2 Z)=0
$$

so we have the two points $(0: 0: 1)$ and $(2: 0: 1)$. If $X=-2 Z$ then we have

$$
Y^{2} X-8 Z^{3}=0 \text { and } Y^{2}+8 Z^{2}=0
$$

so we have the two points $(2: 2 \sqrt{2}:-1)$ and $(2:-2 \sqrt{2}:-1)$. Calculate the intersection multiplicities:
($0: 0: 1$): Dehomogenize with $Z=1$. Let $P=(0,0)$, calculate

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(Y^{2}-X(X-2)(X+1)\right) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X(X-2)(X+2)) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X) \cap V\left(Y^{2}+X(X-2)\right)\right)+\operatorname{In}\left(P, V(X-2) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& \quad+\operatorname{In}\left(P, V(X+2) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X) \cap V\left(Y^{2}\right)\right)+0+0 \\
& =2
\end{aligned}
$$

(2:0:1): Dehomogenize with $Z=1$. Let $P=(2,0)$.

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(Y^{2}-X(X-2)(X+1)\right) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X(X-2)(X+2)) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =0+\operatorname{In}\left(P, V(X-2) \cap V\left(Y^{2}+X(X-2)\right)\right)+0 \\
& =\operatorname{In}\left(P, V(X-2) \cap V\left(Y^{2}\right)\right) \\
& =2
\end{aligned}
$$

(2:2 $\sqrt{2}:-1)$: Dehomogenize with $Z=1$. Let $P(-2:-2 \sqrt{2})$.

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(Y^{2}-X(X-2)(X+1)\right) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X(X-2)(X+2)) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =0+0+\operatorname{In}\left(P, V(X+2) \cap V\left(Y^{2}+X(X-2)\right)\right) \\
& =\operatorname{In}\left(P, V(X+2) \cap V\left(Y^{2}+8\right)\right) \\
& =\operatorname{In}(P, V(X+2) \cap V(Y+2 \sqrt{2}))+\operatorname{In}(P, V(X+2) \cap V(Y-2 \sqrt{2})) \\
& =1
\end{aligned}
$$

(2:-2 $\sqrt{2}:-1$): By the same calculation as the previous point but with the last two terms switched we get again an intersection multiplicity of 1 .
(b) We have

$$
\begin{array}{r}
\left(X^{2}+Y^{2}\right) Z+X^{3}+Y^{3}=0 \\
X^{3}+Y^{3}-2 X Y Z=0
\end{array}
$$

Subbing the second into the first we get $Z\left(X^{2}+Y^{2}+2 X Y\right)=0$ so $Z=0$ or $X+Y=0$. If $Z=0$ we have $X^{3}+Y^{3}=0$ so we get the points ($1:-1: 0$), $\left(1:-e^{2 \pi i / 3}: 0\right),\left(1:-e^{4 \pi i / 3}: 0\right)$. If $X-Y=0$ then we get $2 Y^{2} Z=0$ so we get the new point $(0: 0: 1)$. Calculate the intersection multiplicities. For the first three cases dehomogenize with $X=1$. That is, calculate

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(\left(Y^{2}+1\right) Z+Y^{3}+1\right) \cap V\left(Y^{3}+1-2 Y Z\right)\right) \\
& =\operatorname{In}\left(P, V\left(\left(Y^{2}+2 Y+1\right) Z\right) \cap V\left(Y^{3}+1-2 Y Z\right)\right) \\
& =\operatorname{In}\left(P, V(Z) \cap V\left(Y^{3}+1-2 Y Z\right)\right)+2 \operatorname{In}\left(P, V(Y+1) \cap V\left(Y^{3}+1-2 Y Z\right)\right) \\
& =\operatorname{In}\left(P, V(Z) \cap V\left(Y^{3}+1\right)\right)+2 \operatorname{In}(P, V(Y+1) \cap V(2 Z)) \\
& =\operatorname{In}(P, V(Z) \cap V(Y+1))+\operatorname{In}\left(P, V(Z) \cap V\left(Y+e^{2 \pi i / 3}\right)\right) \\
& \quad+\operatorname{In}\left(P, V(Z) \cap V\left(Y+e^{4 \pi i / 3}\right)\right)+2 \operatorname{In}(P, V(Y+1) \cap V(2 Z))
\end{aligned}
$$

(1:-1:0): Let $P=(-1,0)$, continuing the above calculation

$$
\operatorname{In}\left(P, V\left(\left(Y^{2}+1\right) Z+Y^{3}+1\right) \cap V\left(Y^{3}+1-2 Y Z\right)\right)=1+0+0+2=3
$$

$\left(1:-e^{2 \pi i / 3}: 0\right)$: Let $P=\left(-e^{2 \pi i / 3}, 0\right)$.

$$
\operatorname{In}\left(P, V\left(\left(Y^{2}+1\right) Z+Y^{3}+1\right) \cap V\left(Y^{3}+1-2 Y Z\right)\right)=0+1+0+0=1
$$

$\left(1:-e^{4 \pi i / 3}: 0\right)$: Let $P=\left(-e^{4 \pi i / 3}, 0\right)$.

$$
\operatorname{In}\left(P, V\left(\left(Y^{2}+1\right) Z+Y^{3}+1\right) \cap V\left(Y^{3}+1-2 Y Z\right)\right)=0+0+1+0=1
$$

$(0: 0: 1)$: This time dehomogenize with $Z=1$. Let $P=(0,0)$.

$$
\operatorname{In}\left(P, V\left(\left(X^{2}+Y^{2}\right)+X^{3}+Y^{3}\right) \cap V\left(X^{3}+Y^{3}-2 X Y\right)\right)=4
$$

since there are no common tangents.
(c) We have

$$
\begin{aligned}
Y^{5}-X\left(Y^{2}-X Z\right)^{2} & =0 \\
Y^{4}+Y^{3} Z-X^{2} Z^{2} & =0
\end{aligned}
$$

First consider $Y=0$. Then $X^{2} Z^{2}=0$ so we have the points $(1: 0: 0)$ and $(0: 0: 1)$ (and we can check that both work). Now consider $Y=1$. We have

$$
\begin{aligned}
& 0=1-X(1-X Z)^{2}=1-X\left(1-2 X Z+X^{2} Z^{2}\right) \\
& 0=1+Z-X^{2} Z^{2}
\end{aligned}
$$

Subbing the second into the first we get $1=X(2-2 X Z+Z)$. Solving for Z we get $Z=(1-2 X) /(X(1-2 X))$ or $1-2 X=0$. If $1 \neq 2 X, X \neq 0$, then
$Z=1 / X$, but this does not satisfy the first equation. If $1-2 X=0$ then we get

$$
0=1+Z-\frac{Z^{2}}{4}
$$

So $Z=2 \pm 2 \sqrt{2}$ giving the points ($1: 2: 4 \pm 4 \sqrt{2}$).
Now calculate the intersection multiplicities
$(0: 0: 1)$: Dehomogenize with $Z=1$. Let $P=(0,0)$. We have

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(Y^{5}-X Y^{4}+X^{2} Y^{2}-X^{3}\right) \cap V\left(Y^{4}+Y^{3}-X^{2}\right)\right) \\
& =\operatorname{In}\left(P, V\left(Y^{2}\left(Y^{3}-2 X Y^{2}-X Y+X^{2}\right)\right) \cap V\left(Y^{4}+Y^{3}-X^{2}\right)\right) \\
& =\operatorname{In}\left(P, V\left(Y^{2}\right) \cap V\left(-X^{2}\right)\right)+\operatorname{In}\left(P, V\left(Y^{3}-2 X Y^{2}-X Y+X^{2}\right) \cap V\left(Y^{4}+Y^{3}-X^{2}\right)\right) \\
& =4+\operatorname{In}\left(P, V\left(Y^{3}-2 X Y^{2}-X Y+X^{2}\right) \cap V\left(Y\left(Y^{3}+2 Y^{2}-2 X Y-X\right)\right)\right) \\
& =4+\operatorname{In}\left(P, V\left(X^{2}\right) \cap V(Y)\right)+\operatorname{In}\left(P, V\left(Y\left(Y^{2}+Y^{2} X-2 X^{2}-X\right)\right) \cap V\left(Y^{3}+2 Y^{2}-2 X Y-X\right)\right) \\
& =6+1+\operatorname{In}\left(P, V\left(Y^{2}+Y^{2} X-2 X^{2}-X\right) \cap V\left(Y^{3}-Y^{2} X+Y^{2}+2 X^{2}-2 X Y\right)\right) \\
& =7+2=9
\end{aligned}
$$

$(1: 2: 4 \pm 4 \sqrt{2}): P$ is a smooth point of both curves so the intersection multiplicity is 1 .
($1: 0: 0)$: By Bezout's theorem this point must also have multipliciyty 9 .
(d) We have

$$
\begin{aligned}
\left(X^{2}+Y^{2}\right)^{2}+Y Z\left(3 X^{2}-Y^{2}\right) & =0 \\
\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2} Z^{2} & =0
\end{aligned}
$$

If $Y=0$ then $X=0$ and the point $(0: 0: 1)$ works. Likewise if $X=0$ then $Y=0$. Now let $X=1$ and use Maple: get the six points ($1: \pm i: 0$), ($1:$ $\left.\frac{10 \pm \sqrt{80}}{2}: \frac{2}{5}\left(\frac{10 \pm \sqrt{80}}{2}\right)^{2}-2 \frac{10 \pm \sqrt{80}}{2}\right)$. Now calculate the intersection multiplicities. First notice

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(\left(X^{2}+Y^{2}\right)^{2}+Y Z\left(3 X^{2}-Y^{2}\right)\right) \cap V\left(\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2} Z^{2}\right)\right) \\
& =\operatorname{In}\left(P, V\left(\left(X^{2}+Y^{2}\right)^{2}+Y Z\left(3 X^{2}-Y^{2}\right)\right) \cap V\left(Y Z\left(\left(3 X^{2}-Y^{2}\right)\left(X^{2}+Y^{2}\right)+4 X^{2} Y Z\right)\right)\right)
\end{aligned}
$$

(0:0:1): Dehomogenize with $Z=1, P=(0,0)$. Continuing the above calculation

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(\left(X^{2}+Y^{2}\right)^{2}+Y\left(3 X^{2}-Y^{2}\right)\right) \cap V\left(\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2}\right)\right) \\
& =\operatorname{In}\left(P, V\left(X^{4}\right) \cap V(Y)\right)+\operatorname{In}\left(P, V\left(\left(X^{2}+Y^{2}\right)^{2}+Y\left(3 X^{2}-Y^{2}\right)\right) \cap V\left(\left(3 X^{2}-Y^{2}\right)\left(X^{2}+Y^{2}\right)+4 X^{2} Y\right)\right) \\
& =4+\operatorname{In}\left(P, V\left(Y\left(4 Y\left(X^{2}+Y^{2}\right)-12 X^{2}+3 Y^{2}\right)\right) \cap V\left(\left(3 X^{2}-Y^{2}\right)\left(X^{2}+Y^{2}\right)+4 X^{2} Y\right)\right) \\
& =4+\operatorname{In}\left(P, V(Y) \cap V\left(3 X^{4}\right)\right)+\operatorname{In}\left(P, V\left(4 Y\left(X^{2}+Y^{2}\right)-5 X^{2}+3 Y^{2}\right) \cap V\left(\left(3 X^{2}-Y^{2}\right)\left(X^{2}+Y^{2}\right)+4 X^{2}\right.\right. \\
& =4+4+6=14
\end{aligned}
$$

(1:i:0): Dehomogenize with $X=1, P=(i, 0)$.

$$
\begin{aligned}
& \operatorname{In}\left(P, V\left(\left(1+Y^{2}\right)^{2}+Y Z\left(3-Y^{2}\right)\right) \cap V\left(\left(1+Y^{2}\right)^{3}-4 Y^{2} Z^{2}\right)\right) \\
& =\operatorname{In}(P, V(1) \cap V(Y))+\operatorname{In}\left(P, V\left(\left(1+Y^{2}\right)^{2}\right) \cap V(Z)\right) \\
& \quad+\operatorname{In}\left(P, V\left(\left(1+Y^{2}\right)^{2}+Y Z\left(3-Y^{2}\right)\right) \cap V\left(\left(3-Y^{2}\right)\left(1+Y^{2}\right)+4 Y Z\right)\right) \\
& =0+2+\operatorname{In}\left(P, V\left(\left(1+Y^{2}\right)^{2}+Y Z\left(3-Y^{2}\right)\right) \cap V\left(\left(3-Y^{2}\right)\left(1+Y^{2}\right)+4 Y Z\right)\right)
\end{aligned}
$$

for the last term translate $Y \leftarrow Y-i$ get that the lowest degree terms are in the first case $-8 i Y+4 i Z$ and in the second case $-4 i Z$ so there are no common tangents and P is a smooth point of each. Thus the intersection multiplicity is 3 .
(1:-i:0): Arguing as above we again get 3 .
rest: By Bezout the remaining points each have multiplicity 1.
F, 5-6: Without loss of generality P is the origin. Let f be the lowest degree part of F. If $f_{X} \neq 0$ then the lowest degree part of F_{X} is f_{X} which has degree one less than the degree of f, and hence $m_{P}\left(F_{X}\right)=m_{P}(F)-1$. On the other hand if $f_{X}=0$ then the lowest degree part of F_{X} has degree at least the degree of f and hence $m_{P}\left(F_{X}\right)>m_{P}(F)-1$. Together this gives the result.
F, 5-22: F is irreducible so F and F_{X} have no common components. So by Fulton's Corollary 1 to Bezout's Theorem we have that

$$
\sum_{P} m_{P}(F) m_{P}\left(F_{X}\right) \leq \operatorname{deg}(F) \operatorname{deg}\left(F_{X}\right)=n(n-1)
$$

Using the previous result we get

$$
\sum_{P} m_{P}(F)\left(m_{P}(F)-1\right) \leq \sum_{P} m_{P}(F) m_{P}\left(F_{X}\right) \leq n(n-1)
$$

We get the most multiple points when each are double points. Let m be the number of multiple points of F. Then $2 m \leq n(n-1)$ so $m \leq n(n-1) / 2$.

