
HOMEWORK 2 SOLUTIONS

MATH 818, FALL 2010

Sh, I.4.9: We have

f : P2 → P2

(x1 : x2 : x3) 7→ (x1x2 : x0x2 : x0x1)

This is a rational map, and it is regular unless x1x2 = 0, x0x2 = 0, x0x1 = 0. That
is f is regular except at (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0). f is its own inverse and
hence f is a birational map. f is an isomorphism on P2\V (x1)∪ V (x2)∪ V (x3) since
if no coordinate is 0 then no coordinate is zero after applying f .

Sh, I.5.7: k[A1] = k[t]. k[V (y2 = x3)] = k[x, y]/〈y2 = x3〉, and f ∗ : k[x, y]/〈y2 = x3〉 → k[t] by
f(p(x, y)) = p(t2, t3). So the question is asking if k[t] is integral over k[t2, t3]. This
is the case because we need only to check that t is integral over k[t2, t3] which it is
since it satisfies the monic polynomial T 2 = t2.

Sh, I.5.8: Embed Ar in Pr. Let Pr−1∞ be the points at infinity. Let E = L∩Pr. Then projection
parallel to L in Ar is the same as projecting away from E in Pr (This is because
lines paralell to L in Ar are precisely lines in Pr which go through E.). Thus from
Theorem I.5.7 of Shafarevich we know that φL is finite when E 6∈ X. So

S ⊂ X ∩ Pr−1∞ .

On the other hand suppose E ∈ X. Let t0, . . . , tr be projective coordinates on Pr
with Pr−1∞ being t0 = 0. Use a projective automorphism (linear even!) to make
L = V (t1, . . . , tr−1) and the (r − 1)-dimensional subspace Y not containing L equal
V (tr). Then E = (0 : 0 : · · · : 1) and

φL : X → Y

(t1, . . . , tr) 7→ (t1, . . . , tr−1)

Suppose φL were finite. Consider tr as a function on X; then tr satisfies an equation

tkr + ak−1t
k−1
r + · · ·+ a0 = 0

in k[Y ]. But E ∈ X means tr tends to infinity on X. So consider y ∈ Y , x ∈ φ−1L (y);
we have

tr(x)k + ak−1(y)tr(x)k−1 + · · ·+ a0(y) = 0

Choosing x and y to let tr tend to infinity we get a contradiction, so φL is not finite.
Finally if r = 2 and X = V (xy = 1) then X = V (xy = z2), and so S = X ∩ P1

∞ =
{(1 : 1 : 0)}.

F, 3-2: Assume the characteristic of k is 0.
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(a) Solve

Y 3 − Y 2 +X3 −X2 + 3Y 2X + 3X2Y + 2XY = 0

3Y 2 − 2Y + 6Y X + 3X2 + 2X = 0

3X2 − 2X + 3Y 2 + 6XY + 2Y = 0

Adding 0 = 3eq1 − Y eq2 −Xeq3 = −X2 − Y 2 + 2XY so X + Y = 0. Subbing
X = −Y into the second equation gives Y = 0, and (0, 0) satisfies all the
equations, so the only singular point is (0, 0).
Taking the lowest degree part we have −X2−Y 2 +2XY = 0 so (0, 0) is a double
point and the only tangent line is Y = X.

(b) Solve

Y 4 +X4 −X2Y 2 = 0

4Y 3 − 2X2Y = 0

4X3 − 2XY 2 = 0

The second equation gives Y = 0 or 2Y 2 = X2. The third equation gives X = 0
or 2X2 = Y 2. Thus Y = 0⇔ X = 0 and (0, 0) is a solution to the system. The
other possibility is 2Y 2 = X2 and 2X2 = Y 2 but these cannot be simultaneously
satisfied unless again X = Y = 0. Thus the only singular point is (0, 0).
This polynomial is homogeneous and its linear factors are 2X ± Y (i±

√
3) thus

the point is a quadruple point and has those four tangent lines.
(c) Solve

Y 3 +X3 − 3X2 − 3Y 2 + 3XY + 1 = 0

3Y 2 − 6Y + 3X = 0

3X2 − 6X + 3Y = 0

Adding 0 = 3eq1 + (1 − Y )eq2 + (1 − X)eq3 = (X − 1)(Y − 1). So X = 1 or
Y = 1. Subbing X = 1 into equation 3 gives Y = 1, and similarly starting with
Y = 1, so we have one singular point (1, 1).
Translating the singular point to the origin

(Y + 1)3 + (X + 1)3 − 3(X + 1)2 − 3(Y + 1)2 + 3(X + 1)(Y + 1) + 1 = X3 + Y 3 + 3XY

The lowest degree part is 3XY and so the point is a double point and the
tangents are (translating back) X = 1 and Y = 1.

(d) Solve

Y 2 + (X2 − 5)(2X2 − 5)2 = 0

2Y = 0

2X(6X2 − 25)(2X2 − 5) = 0

So from equation 2 Y = 0, and the only common roots of equation 2 and equation
1 with Y = 0 are 2X2 = 5, that is X = ±

√
5/2. So the singular points are

(
√

5/2, 0) and (−
√

5/2, 0).
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First take (
√

5/2, 0). Translating to the origin we get

Y 2 + ((X +
√

5/2)2 − 5)(2(X +
√

5/2)2 − 5)2

Fortunately we only need the lowest degree part: Y 2 − 100X2, and the lowest
degree part will be the same (translated) for the other singular point. Thus
both are double points with tangents (translated back) the appropriate two of

Y = ±10(X ±
√

5/2).
F, 3-8: (a) Translate P and Q to the origin. Composing T with these two translations we

still get a polynomial map. Then F T (x, y) = F (T1(x, y), T2(x, y)). But T takes
the origin to the origin, so T1 and T2 both have no constant terms. Thus the
lowest degree part of F T has degree at least the lowest degree part of F .

(b) Continuing with the notation and assumtions above, write

F = fm + fm+1 + · · ·+ fn

with fi homogeneous of degree i. As above applying T cannot decrease degrees,
so the lowest degree part of F T is the lowest degree part of fTm. Thus only
the degree 1 part of F plays a role in the multiplicities. Suppose the Jacobian
is invertible at the origin. Then the degree 1 part of F is invertible with a
polynomial inverse L (of degree 1). And so mP (F ) ≤ mQ(F T ) ≤ mP ((F T )L) =
mP (F ). Thus mQ(F T ) = mP (F ).

(c) Using the example Fulton gives, mP (F ) = 1 and F T = Y −X4 so mP (F T ) = 1.
However the Jacobian is [

2X 0
0 1

]
which is not invertible at the origin.

F, 3-13: Translate P to the origin and take 0 ≤ n < mP (F ). Then m = 〈X, Y 〉. Thus
mn+1/mn is the vector space in k[F ] generated by homogeneous polynomials of degree
n. But n < mP (F ), so F has no terms of degree less than or equal to n. Thus F
introduces no relations on mn+1/mn. Therefore dimmn+1/mn = n+ 1.

If P is a simple point then dimm/m2 = 1 as n is sufficiently large for the theorem
(Theorem 2 in Fulton) to apply. If P is not a simple point then dimm/m2 = 2 by
the above argument.

F, 3-20: P is a simple point on F so we are trying to show

ordFP (G+H) ≥ min{ordFP (G), ordFP (H)}.
But this is the ultrametric triangle inequality which is satisfied by ord. (For a proof,
suppose t is the uniformizer, and say t divides G exactly n times and H exactly m
times. Then certainly t divides G + H min{m,n} times, and perhaps more if there
is cancellation.)

This does not hold if P is not a simple point on F because we have the following
example. Let P = (0, 0) and F = Y 2−X2(X + 1). Let G = X +Y and H = X −Y .
Then

In(P, F ∩G) = In(P, V ((X+Y )(X−Y )−X3)∩V (X+Y )) = In(P, V (X3)∩V (X+Y )) = 3.

Similarly

In(P, F ∩H) = In(P, V ((X+Y )(X−Y )−X3)∩V (X−Y )) = In(P, V (X3)∩V (X−Y )) = 3.
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But G+H = 2X and

In(P, F ∩ V (2X)) = In(P, V (Y 2) ∩ V (2X)) = 2.

which does not satisfy the inequality.
F, 5-3: (a) We have

Y 2Z −X(X − 2Z)(X + Z) = 0

Y 2 +X2 − 2XZ = 0

Solving the second for Y 2 and subbing into the first we get

Y 2(X + 2Z) = 0

So Y = 0 or X = −2Z. If Y = 0 then we have

X(X − 2Z)(X + Z) = 0 and X(X − 2Z) = 0

so we have the two points (0 : 0 : 1) and (2 : 0 : 1). If X = −2Z then we have

Y 2X − 8Z3 = 0 and Y 2 + 8Z2 = 0

so we have the two points (2 : 2
√

2 : −1) and (2 : −2
√

2 : −1). Calculate the
intersection multiplicities:

(0 : 0 : 1): Dehomogenize with Z = 1. Let P = (0, 0), calculate

In(P, V (Y 2 −X(X − 2)(X + 1)) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X(X − 2)(X + 2)) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X) ∩ V (Y 2 +X(X − 2))) + In(P, V (X − 2) ∩ V (Y 2 +X(X − 2)))

+ In(P, V (X + 2) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X) ∩ V (Y 2)) + 0 + 0

= 2

(2 : 0 : 1): Dehomogenize with Z = 1. Let P = (2, 0).

In(P, V (Y 2 −X(X − 2)(X + 1)) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X(X − 2)(X + 2)) ∩ V (Y 2 +X(X − 2)))

= 0 + In(P, V (X − 2) ∩ V (Y 2 +X(X − 2))) + 0

= In(P, V (X − 2) ∩ V (Y 2))

= 2

(2 : 2
√

2 : −1): Dehomogenize with Z = 1. Let P (−2 : −2
√

2).

In(P, V (Y 2 −X(X − 2)(X + 1)) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X(X − 2)(X + 2)) ∩ V (Y 2 +X(X − 2)))

= 0 + 0 + In(P, V (X + 2) ∩ V (Y 2 +X(X − 2)))

= In(P, V (X + 2) ∩ V (Y 2 + 8))

= In(P, V (X + 2) ∩ V (Y + 2
√

2)) + In(P, V (X + 2) ∩ V (Y − 2
√

2))

= 1
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(2 : −2
√

2 : −1): By the same calculation as the previous point but with the last two terms
switched we get again an intersection multiplicity of 1.

(b) We have

(X2 + Y 2)Z +X3 + Y 3 = 0

X3 + Y 3 − 2XY Z = 0

Subbing the second into the first we get Z(X2 + Y 2 + 2XY ) = 0 so Z = 0 or
X + Y = 0. If Z = 0 we have X3 + Y 3 = 0 so we get the points (1 : −1 : 0),
(1 : −e2πi/3 : 0), (1 : −e4πi/3 : 0). If X − Y = 0 then we get 2Y 2Z = 0 so we get
the new point (0 : 0 : 1). Calculate the intersection multiplicities. For the first
three cases dehomogenize with X = 1. That is, calculate

In(P, V ((Y 2 + 1)Z + Y 3 + 1) ∩ V (Y 3 + 1− 2Y Z))

= In(P, V ((Y 2 + 2Y + 1)Z) ∩ V (Y 3 + 1− 2Y Z))

= In(P, V (Z) ∩ V (Y 3 + 1− 2Y Z)) + 2In(P, V (Y + 1) ∩ V (Y 3 + 1− 2Y Z))

= In(P, V (Z) ∩ V (Y 3 + 1)) + 2In(P, V (Y + 1) ∩ V (2Z))

= In(P, V (Z) ∩ V (Y + 1)) + In(P, V (Z) ∩ V (Y + e2πi/3))

+ In(P, V (Z) ∩ V (Y + e4πi/3)) + 2In(P, V (Y + 1) ∩ V (2Z))

(1 : −1 : 0): Let P = (−1, 0), continuing the above calculation

In(P, V ((Y 2 + 1)Z + Y 3 + 1) ∩ V (Y 3 + 1− 2Y Z)) = 1 + 0 + 0 + 2 = 3

(1 : −e2πi/3 : 0): Let P = (−e2πi/3, 0).

In(P, V ((Y 2 + 1)Z + Y 3 + 1) ∩ V (Y 3 + 1− 2Y Z)) = 0 + 1 + 0 + 0 = 1

(1 : −e4πi/3 : 0): Let P = (−e4πi/3, 0).

In(P, V ((Y 2 + 1)Z + Y 3 + 1) ∩ V (Y 3 + 1− 2Y Z)) = 0 + 0 + 1 + 0 = 1

(0 : 0 : 1): This time dehomogenize with Z = 1. Let P = (0, 0).

In(P, V ((X2 + Y 2) +X3 + Y 3) ∩ V (X3 + Y 3 − 2XY )) = 4

since there are no common tangents.
(c) We have

Y 5 −X(Y 2 −XZ)2 = 0

Y 4 + Y 3Z −X2Z2 = 0

First consider Y = 0. Then X2Z2 = 0 so we have the points (1 : 0 : 0) and
(0 : 0 : 1) (and we can check that both work). Now consider Y = 1. We have

0 = 1−X(1−XZ)2 = 1−X(1− 2XZ +X2Z2)

0 = 1 + Z −X2Z2

Subbing the second into the first we get 1 = X(2 − 2XZ + Z). Solving for Z
we get Z = (1 − 2X)/(X(1 − 2X)) or 1 − 2X = 0. If 1 6= 2X, X 6= 0, then
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Z = 1/X, but this does not satisfy the first equation. If 1− 2X = 0 then we get

0 = 1 + Z − Z2

4

So Z = 2± 2
√

2 giving the points (1 : 2 : 4± 4
√

2).
Now calculate the intersection multiplicities

(0 : 0 : 1): Dehomogenize with Z = 1. Let P = (0, 0). We have

In(P, V (Y 5 −XY 4 +X2Y 2 −X3) ∩ V (Y 4 + Y 3 −X2))

= In(P, V (Y 2(Y 3 − 2XY 2 −XY +X2)) ∩ V (Y 4 + Y 3 −X2))

= In(P, V (Y 2) ∩ V (−X2)) + In(P, V (Y 3 − 2XY 2 −XY +X2) ∩ V (Y 4 + Y 3 −X2))

= 4 + In(P, V (Y 3 − 2XY 2 −XY +X2) ∩ V (Y (Y 3 + 2Y 2 − 2XY −X)))

= 4 + In(P, V (X2) ∩ V (Y )) + In(P, V (Y (Y 2 + Y 2X − 2X2 −X)) ∩ V (Y 3 + 2Y 2 − 2XY −X))

= 6 + 1 + In(P, V (Y 2 + Y 2X − 2X2 −X) ∩ V (Y 3 − Y 2X + Y 2 + 2X2 − 2XY ))

= 7 + 2 = 9

(1 : 2 : 4± 4
√

2): P is a smooth point of both curves so the intersection multiplicity is 1.
(1 : 0 : 0): By Bezout’s theorem this point must also have multipliciyty 9.
(d) We have

(X2 + Y 2)2 + Y Z(3X2 − Y 2) = 0

(X2 + Y 2)3 − 4X2Y 2Z2 = 0

If Y = 0 then X = 0 and the point (0 : 0 : 1) works. Likewise if X = 0 then
Y = 0. Now let X = 1 and use Maple: get the six points (1 : ±i : 0), (1 :

10±
√
80

2
: 2

5

(
10±
√
80

2

)2
− 210±

√
80

2
). Now calculate the intersection multiplicities.

First notice

In(P, V ((X2 + Y 2)2 + Y Z(3X2 − Y 2)) ∩ V ((X2 + Y 2)3 − 4X2Y 2Z2))

= In(P, V ((X2 + Y 2)2 + Y Z(3X2 − Y 2)) ∩ V (Y Z((3X2 − Y 2)(X2 + Y 2) + 4X2Y Z)))

(0 : 0 : 1): Dehomogenize with Z = 1, P = (0, 0). Continuing the above calculation

In(P, V ((X2 + Y 2)2 + Y (3X2 − Y 2)) ∩ V ((X2 + Y 2)3 − 4X2Y 2))

= In(P, V (X4) ∩ V (Y )) + In(P, V ((X2 + Y 2)2 + Y (3X2 − Y 2)) ∩ V ((3X2 − Y 2)(X2 + Y 2) + 4X2Y ))

= 4 + In(P, V (Y (4Y (X2 + Y 2)− 12X2 + 3Y 2)) ∩ V ((3X2 − Y 2)(X2 + Y 2) + 4X2Y ))

= 4 + In(P, V (Y ) ∩ V (3X4)) + In(P, V (4Y (X2 + Y 2)− 5X2 + 3Y 2) ∩ V ((3X2 − Y 2)(X2 + Y 2) + 4X2Y ))

= 4 + 4 + 6 = 14
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(1 : i : 0): Dehomogenize with X = 1, P = (i, 0).

In(P, V ((1 + Y 2)2 + Y Z(3− Y 2)) ∩ V ((1 + Y 2)3 − 4Y 2Z2))

= In(P, V (1) ∩ V (Y )) + In(P, V ((1 + Y 2)2) ∩ V (Z))

+ In(P, V ((1 + Y 2)2 + Y Z(3− Y 2)) ∩ V ((3− Y 2)(1 + Y 2) + 4Y Z))

= 0 + 2 + In(P, V ((1 + Y 2)2 + Y Z(3− Y 2)) ∩ V ((3− Y 2)(1 + Y 2) + 4Y Z))

for the last term translate Y ← Y − i get that the lowest degree terms are
in the first case −8iY + 4iZ and in the second case −4iZ so there are no
common tangents and P is a smooth point of each. Thus the intersection
multiplicity is 3.

(1 : −i : 0): Arguing as above we again get 3.
rest: By Bezout the remaining points each have multiplicity 1.

F, 5-6: Without loss of generality P is the origin. Let f be the lowest degree part of F .
If fX 6= 0 then the lowest degree part of FX is fX which has degree one less than
the degree of f , and hence mP (FX) = mP (F ) − 1. On the other hand if fX = 0
then the lowest degree part of FX has degree at least the degree of f and hence
mP (FX) > mP (F )− 1. Together this gives the result.

F, 5-22: F is irreducible so F and FX have no common components. So by Fulton’s Corollary
1 to Bezout’s Theorem we have that∑

P

mP (F )mP (FX) ≤ deg(F ) deg(FX) = n(n− 1)

Using the previous result we get∑
P

mP (F )(mP (F )− 1) ≤
∑
P

mP (F )mP (FX) ≤ n(n− 1)

We get the most multiple points when each are double points. Let m be the number
of multiple points of F . Then 2m ≤ n(n− 1) so m ≤ n(n− 1)/2.
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