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Abstract

The approximate cardinal basis function (ACBF) preconditioning technique has
been used to solve partial differential equations (PDEs) with radial basis func-
tions (RBFs). In [31], a preconditioning scheme that is based upon constructing the
least-squares approximate cardinal basis function from linear combinations of the
RBF-PDE matrix elements has shown very attractive numerical results. This pre-
conditioning technique is sufficiently general that it can be easily applied to many
differential operators.

In this paper, we review the ACBF preconditioning techniques previously used
for interpolation problems and investigate a class of preconditioners based on the
one proposed in [31] when a cardinality condition is enforced on different subsets.
We numerically compare the ACBF preconditioners on several numerical examples
of Poisson’s, modified Helmholtz and Helmholtz equations, as well as a diffusion
equation and discuss their performance.
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Hardy’s multiquadric φ(r) =
√

r2 + c2,

Inverse multiquadric φ(r) = 1/
√

r2 + c2,

Gaussian spline φ(r) = e−cr2

,

Table 1
Examples of infinitely smooth RBFs.

1 Introduction

In the last 20 years many researchers have shown interest in mesh-free radial
basis functions (RBFs) methods. RBFs have been used for interpolation prob-
lems [6,8–10,36] as well as for numerically solving partial differential equations
(PDEs) [22–26,28]. In addition, Chen [12–14] investigated the use of distance
functions that are related to RBFs to solve various PDE systems. The method
is attractive not only because of its spectral accuracy [15,18,19,33,34,40,41]
when using Gaussians or multiquadrics but its ability to work on scattered
data without using any mesh. The mesh generation problem over irregularly
shaped domains is often in excess of 70% of the total computational cost.

The price for this increased accuracy is usually ill-conditioning of the associ-
ated linear systems that need to be solved: the “uncertainty relation” shown
by Schaback [37–39] is that better conditioning is associated with poorer ac-
curacy and worse conditioning is associated with improved accuracy. Different
approaches have already been proposed to overcome the difficulties, for in-
stance, see [1,3,17,21,27,29,31].

The idea of RBFs is to use linear combinations of translates of a basis function
φ(r) of one variable, expanded about the given scattered “data centers” ~xj ∈
IRd, j = 1, . . . , N to approximate an unknown function by

s(~x) =
N
∑

j=1

λjφ(‖~x− ~xj‖), (1)

where ~x ∈ IRd and ‖ · ‖ is the Euclidean norm.

In this paper, we focus upon the asymmetric formulation [25,26] of PDEs
using infinitely smooth RBFs; some examples are given in Table 1. Consider
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a boundary value problem of the form

Lu = f(~x) in Ω ⊂ IRd,

Bu = g(~x) on ∂Ω,
(2)

where ∂Ω denotes the boundary of the domain Ω. Let L be the differential
operator that operates on the interior, and B be an operator that specifies the
boundary conditions of Dirichlet, Neumann or mixed type. Both f and g are
given functions that map IRd → IR.

The unknown PDE solution u is approximated by RBFs in the form of (1).
We assume the collocation points are arranged in such a way that the first
NI points and the last NB points are in Ω and on ∂Ω, respectively. If one
collocates at the data centers, the collocation conditions of (2) are

fi = f(~xi) =
N
∑

j=1

λjLφj(~xi), for i = 1, . . . , NI ,

gi = g(~xi) =
N
∑

j=1

λjBφj(~xi), for i = NI +1, . . . , N,

(3)

where φi(·) = φ(‖·−~xi‖). The equations in (3) can be summarized in a system
of equations for the unknown coefficients λj,

A~λ = ~f, (4)

where ~λ = (λ1, . . . , λN)T , and ~f = (f1, . . . , fNI
, gNI+1, . . . , gN)T , Aij = Lφ(~xi−

~xj) for i = 1, . . . , NI , Aij = Bφ(~xi−~xj) for i = NI +1, . . . , N , and j = 1, . . . , N
in both cases.

The matrix system given in (4) is generally non-symmetric and full. This
system of equations is known to be ill-conditioned, even for moderate N . This
ill-conditioning worsens with N or with a flat RBF (e.g. the multiquadric
with large shape parameter c). Although some very rare combinations of data
center arrangements and c can produce a singular matrix, the singularity can
be removed by perturbing either the value of c or the data centers; in the event
of a singular matrix, preconditioning is a futile effort.

The outline of this paper is as follows: we begin by reviewing the existing
approximate cardinal function preconditioning methods for the interpolation
problems and the RBF-PDE problems in Section 2. We present the estimated
number of flops for each preconditioner, CPU time can then be computed
by multiplying this by the flop rate of the computer used. In Section 3, we

3



review how the fast multipole method can be employed to reduce the cost of
solving PDEs with MQ-RBF. Then, we present the numerical performance of
the different ACBF preconditioners when applied to the Poisson’s, modified
Helmholtz and Helmholtz equations, as well as a diffusion equation, in Section
4. We summarize the results in Section 5.

2 Approximate cardinal function preconditioning methods

Given centers X = {~x0, ~x1, . . . , ~xn}, a cardinal function for interpolation prob-
lems associated with ~xi has the form

ψi(·) =
N
∑

j=1

w̃jiφ(‖ · −~xj‖), (5)

where ψi(~xi) = 1, and ψi(~xj) = 0 for j = 1, . . . , N, j 6= i. In such a case, the
matrix W̃ with elements w̃ji would be the inverse of the RBF interpolation
matrix on the data set X.

We compute a preconditioner W such that

WA~λ = W ~f

is easier to solve in terms of GMRES iterations than Equation 4.

In all cases discussed in this section, the resulting preconditioners are sparse:
there are only σ nonzero elements in each row. Multiplying the preconditioners
by a vector can be performed in O(σN) flops.

2.1 Approximate cardinal basis functions based on solving local interpolation
problems, minimal-ACBF

Fix σ � N and let Si = [si(1), . . . , si(σ)] be a subset of the index [1, 2, . . . , N ]
associated with the center ~xi. Suppose the expression (5) is formed by a rel-
atively small set of RBFs instead of the whole set X, giving an approximate
cardinal basis function (ACBF). Then, we ensure that

ψi(·) =
∑

j∈Si

wijφ(‖ · −~xj‖) =
σ
∑

k=1

wi,Si(k)φ(‖ · −~xSi(k)‖), (6)
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Fig. 1. On the left we have the ACBF based on a pure local strategy and on the
right we have the ACBF based on local centers and special points.

satisfies the cardinal condition: ψi(~xi) = 1, and ψi(~xj) = 0 for i 6= j ∈ Si. The
other elements wij are set to zero for j /∈ Si.

Generally speaking, the index set Si should be chosen from the local centers
and some special points for both the interpolation [3] and RBF-PDE problem
[31]. Choosing Si to be the index set corresponding to local points only, yields
poor results far away from ~xi. However, the addition of a widely scattered set
of special points within the domain counter-acts the growth of the ACBF; see
Figure 1.

Each row of the preconditioner W has only σ non-zero entries. These are
computed by solving the system

BT
i ~wi = ~ei, (7)

where ~ei is the i-th standard basis vector of length σ and

Bi =





















Asi(1),si(1) Asi(1),si(2) . . . . . . . . . Asi(1),si(σ)

Asi(2),si(1) Asi(2),si(2) . . . . . . . . . Asi(2),si(σ)

...
...

...

Asi(σ),si(1) Asi(σ),si(2) . . . . . . . . . Asi(σ),si(σ)





















∈ R
σ×σ. (8)

The i-th row of W is then given by

Wij =











wi,k if j = si(k) for k = 1, . . . , σ,

0 otherwise.
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Beatson, Cherrie, and Mouat [3] cast the RBF interpolation problem in terms
of a set of ACBFs. For each center and corresponding index set, the cardinal
condition (6) is then enforced on the same set. This results in a σ × σ matrix
system. The set up cost is O(σ3N) when the direct method is used to solve
the N σ × σ systems. We apply this idea to RBF-PDE matrix and name the
resulting scheme minimal-ACBF.

2.2 Approximate cardinal basis functions based on decay elements, DE-ACBF

In the same paper, the far-field expansion of RBFs is also used to construct an
ACBF that satisfies a |~x|−3 decay condition. In two dimensions, let ~x = (x, y)
and ~xi = (ξi, ηi). Consider the center ~xi as fixed, we choose wij in such a
way that all the lower order terms in the far field expansion vanish for all
~x = (x, y). This results in the decay element ACBF (DE-ACBF). Using the
truncated far field expansion of a single multiquadric basis function (see [16])
centered at ~xi,

φi(~x) = φ(‖~x− ~xi‖) =
√

(x− ξi)2 + (y − ηi)2 + c2

=
√

x2 + y2 − ηiy + ξix√
x2 + y2

+
1

2

(η2
i + c2)x2 + (ξ2

i + c2)y2 − 2ξiηixy

(x2 + y2)
3

2

(9)

+
1

2

(ξix+ ηiy){(η2
i + c2)x2 + (ξ2

i + c2)y2 − 2ξiηixy}
(x2 + y2)

5

2

+ O(‖~x‖−3),

the ACBF expression (6) becomes

ψj(~x) =
∑

j∈Si

wij

√

x2 + y2 −
∑

j∈Si

wij

ηiy + ξix√
x2 + y2

+
1

2

∑

j∈Si

wij

(η2
i + c2)x2 + (ξ2

i + c2)y2 − 2ξiηixy

(x2 + y2)
3

2

(10)

+
1

2

∑

j∈Si

wij

(ξix+ ηiy){(η2
i + c2)x2 + (ξ2

i + c2)y2 − 2ξiηixy}
(x2 + y2)

5

2

+ O(‖~x‖−3).

The resulting decay property follows from applying the ten following con-
straints on the coefficients of W

∑

j∈Si

wij~x
γ
j = 0,

for all γ = (γ1, γ2) ∈ N
2
0 such that γ1 + γ2 ≤ 3.
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Fig. 2. On the left we have the DE-ACBF with a symmetric node set, on the right
we have the DE-ACBF with a non-symmetric node set.

This approximation proves to be effective when the node set is approximately
symmetric. At points where a symmetric node set cannot be found (i.e., points
near the boundary) decay proves to be much slower; see Figure 2. Such bad
basis elements are then discarded and replaced with the ACBF computed in
Section 2.1. In order to verify the decay rate of a given ACBF we look at

T =
∑

j∈Si

|ψj(~xi) − δij|.

This value will be small if the ACBF ψj is close to δ and thus we test T < µ
for some µ usually taken to be 0.5. If the function fails this test then we use
an ACBF based on both local and special points.

To extend the discussion from the interpolation problem to PDEs, we change
our spline space from {φi(·)}N

i=1 to

{Ψi(·)}N
i=1 = {Lφi(·)}NI

i=1 ∪ {Bφi(·)}NB

i=1. (11)

The DE-ACBF method can be extended to PDEs, as was introduced by Mouat
[35]. He decoupled the interior nodes from the boundary nodes as the same
far-field expansion does not apply to both differential operators.

For interpolation problems, we require the far field expansion of the radial
basis function, φ, being used. When solving PDEs, we also need the far field
expansion of Lφ and Bφ. For the example of Poisson equation in Section 4,
we require the far field expansion of the Laplacian of the multiquadric basis
function,

∇2φi(~x) = ((x− ξi)
2 + (y − ηi)

2 + 2c2)((x− ξi)
2 + (y − ηi)

2 + c2)−
3

2 .
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This is a generalised multiquadric, see Cherrie, Beatson, and Newsam [16],
whose far field expansion is

∇2φi(~x) =
1√

x2 + y2
+ 3

ηiy + ξix√
x2 + y2

− 2
ηiy + ξix

(x2 + y2)
3

2

+ O(‖~x‖−3).

The DE-ACBF expression then becomes

ψj(~x) =
∑

j∈Si

wij

1√
x2 + y2

+ 3
∑

j∈ Si

wij

ηiy + ξix√
x2 + y2

−2
∑

j∈Si

wij

ηiy + ξix

(x2 + y2)
3

2

+ O(‖~x‖−3).

Thus we enforce the following 3 constraints on the coefficients of W

∑

j∈Si

wij~x
γ
j = 0,

for all γ = (γ1, γ2) ∈ N
2
0 such that γ1 + γ2 ≤ 1.

While the construction of other preconditioners has no dependence on the basis
function used or the problem being solved, construction of a preconditioner
using DE-ACBF’s depends upon both the basis function and the problem
being solved. Similar results are also available for the thin-plate spline, see
[4,5,7,35].

2.3 Approximate cardinal basis functions based on solving least squares prob-
lems, LS-ACBF

Ling and Kansa [31] proposed a simple preconditioning scheme that is based
upon constructing the least-squares approximate cardinal basis functions (LS-
ABCF) that targets ill-conditioned problems. The cardinal condition (6) is
enforced on the whole data set that results in N least-squares problems,

BT
i ~wi = ~ei, (12)
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where ~ei is the i-th standard basis vector and

Bi =





















Asi(1),1 Asi(1),2 . . . . . . . . . Asi(1),N

Asi(2),1 Asi(2),2 . . . . . . . . . Asi(2),N

...
...

...

Asi(σ),1 Asi(σ),2 . . . . . . . . . Asi(σ),N





















∈ R
σ×N . (13)

is a submatrix of A, and

~wi = [wi,1, . . . , wi,σ]T ,

are the σ non-zeros elements of the i-th row of the preconditioner W . The
rows of W are then given by

Wij =











wi,k if j = si(k) for k = 1, . . . , σ,

0 otherwise.
(14)

The method is practical since it does not require any a priori expansion of the
RBF being used, and is not limited to just PDEs. The least squares problems
are solved with either the normal equation, QR factorization with updates,
or SVD factorization with updates. For instance, a considerable amount of
storage and computational savings is obtained by the observation that only
O(σN) elements of AAT are needed for all N normal equations when the
normal equation approach is employed. The total cost of constructing the pre-
conditioner is O(σN 2 + σ3N) where the first term is the cost of finding all
elements of the N normal equations, and the second term is that of solving the
N normal equations using direct method. The cost of solving a Poisson’s equa-
tion using preconditioned GMRES is seen numerically to be O(N 2.11) flops in
the same paper. Furthermore, in [32] the LS-ACBF preconditioning scheme
is coupled with domain decomposition method (DDM) using a customized
updating technique developed by the same authors.

2.4 Approximate cardinal basis functions as right-hand preconditioner, 2 sided-
ACBF

The RBF-PDE preconditioning scheme found in Section 2.3 can be generalized
as a class of preconditioners. We impose the cardinal condition (6) on a set Gi

where Si ⊆ Gi ⊆ X giving

ψi(~xi) = 1, and ψi(~xj) = 0 for j ∈ Gi, j 6= i
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for some index subset Gi = [gi(1), . . . , gi(γ)].

For the center ~xi, the ACBF expression (6) is determined by the choice of
the associated index set Si. An ACBF preconditioner is now determined by
the choice of Gi on which we impose, in the least squares sense, the cardinal
condition.

When Gi = Si, it is the minimal-ACBF in Section 2.1; when Gi = X, we
have the LS-ACBF found in Section 2.3. When Si ⊂ Gi ⊂ X, there are
many possible choices. Note that there are more equations than the number of
unknowns and N least-squares problems need to be solved. The least-squares
problem associated with the center xi is

B̃T
i ~wi = ~ei, (15)

where

B̃i =





















Asi(1),gi(1) Asi(1),gi(2) . . . . . . . . . Asi(1),gi(γ)

Asi(2),gi(1) Asi(2),gi(2) . . . . . . . . . Asi(2),gi(γ)

...
...

...

Asi(σ),gi(1) Asi(σ),gi(2) . . . . . . . . . Asi(σ),gi(γ)





















∈ R
σ×γ . (16)

Although B̃ is still a submatrix of A, the normal matrix B̃B̃T is no longer
a submatrix of AAT . Therefore, the data we obtain at one center cannot be
reused in the other centers.

The idea of preconditioning from both sides using LS-ACBF methods was first
introduced in [31]. However, the method is concluded to be not practical due
to the high set up cost. The ultimate goal is to further improve the condition
of the RBF-PDE system while keeping the set up cost low. Since the cost of
constructing the minimal-ACBF (i.e. Gi = Si) is relatively low in comparison
of LS-ACBF, one could re-apply the idea of minimal-ACBF to get a right hand
preconditioner. Once the left-hand preconditioner W is found, one can apply a
similar process to the columns of WA to construct a right-hand preconditioner
V ∼ (WA)−1. We define Ci to be the submatrix of WA formed by the Si-
th columns and Si-th rows of WA. Since the same subset Si used in the
construction of W is re-used for every center, we avoid extra computation and
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storage for the index sets. For Ci ∈ R
σ×σ given by

Ci =





















WAsi(1),si(1) WAsi(1),si(2) . . . WAsi(1),si(σ)

WAsi(2),si(1) WAsi(2),si(2) . . . WAsi(2),si(σ)

...
...

. . .
...

WAsi(σ),si(1) WAsi(σ),si(2) . . . WAsi(σ),si(σ)





















, (17)

the corresponding square system is

Ci ~vi = ~ei,

where ~vi = [vi,1, vi,2, . . . , vi,m] are the non-zero elements of the i-th column of
V . The columns of V are then given by

Vij =











vj,k if i = sj(k) for k = 1, . . . , σ,

0 otherwise.

Not all the elements of WA are required to solve all N systems. According to
the observation Ling and Kansa made in [31], the cost of finding all necessary
elements of WA would by O(σ2N). The total cost of solving N systems of
equations of the size σ × σ would be O(σ3N) if a direct method is employed.
Similar to the left-hand preconditioner W , the preconditioner V only has
σ nonzero elements in each column; the matrix-vector product of V can be
performed in O(σN) flops and an O(σN) storage.

3 Fast evaluation

An important work of Beatson and coworkers [2,16] is the fast RBF matrix-
vector product algorithm. The evaluation of the MQ expansion at any ~x ∈ R

d

costs O(N logN) flops; this is much faster than the O(N 2) flops for direct
matrix-vector multiplications. This algorithm is also applicable for the RBF-
PDE matrix A and its transpose AT . Fast multiplication algorithms can be
used to reduce the cost of each GMRES iteration. However, a customized al-
gorithm is not necessary for different PDEs as it commonly is for traditional
finite difference method (FDM), finite element method (FEM), and finite vol-
ume method (FVM) applications. Once the algorithms are constructed for all
the involved derivatives individually, they could be reused for other PDEs of
the same order.
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Fast evaluation can easily be applied to PDE problems through the compu-
tation of the far field expansion of the differential operator acting on a radial
basis function. In order to explain the process involved we look at an inter-
polation problem Φ d = f on some data {xi}N

i=1 ⊂ R
d and a chosen radial

basis function, in this case the multiquadric. The resulting solution allows us
to evaluate the approximation to f at any point x by computing

f(x) ≈
N
∑

i=1

αi

√

||x− xi||2 + c2.

However, this requires a huge amount of work for large N . This section aims
to reduce this work by explicitly evaluating only at those points nearby, the
near field, and approximating the effects of far away points, the far field. This
method was introduced by Greengard and Rokhlin [20] in the case of potentials
and was documented by Beatson and Newsam [2] when studying the thin plate
spline, and further by Beatson, Cherrie and Newsam [16] when studying the
multiquadric.

For the remainder of this section we work in two dimensions or more precisely
we work on the complex plane, and we discuss only the multiquadric. We call
a series “Laurent-like” if it valid at all points outside a particular disc.

The method for evaluating the far field requires us to decompose the domain
uniformly retaining information at all levels. We assume the data is within the
unit square [0, 1] × [0, 1] and split the region into four equal squares. These
squares will henceforth be known as panels, in particular the first level panels.
We then split each of these panels into four equal squares known as the second
level panels. This method is applied recursively until the mth level is reached
where m can be chosen by the user typically depending on the amount of data
N . This structure, in two dimensions, is known as a quadtree.

We can now define which panels are associated with the near field and which
are associated with the far field.

Definition 1 A point x is said to be far away from a panel T if they are
separated by at least one panel at the same level as T.

Definition 2 A panel Q is said to be on the evaluation list of a panel T if

(1) Q is on the same or higher level than T,
(2) every point in T is far away from Q,
(3) T contains a point which is not far away from the parent of Q.

12



Fig. 3. The black square is the panel T and the grey squares are those panels on
the evaluation list of T . Therefore the grey squares are associated with the far field
and the black and white squares are associated with the near field.

We associate with each panel Q a function sQ defined by

sQ(x) =
∑

i:xi∈Q

di

√

||x− xi||2 + c2.

The far field, sf , is now defined as the sum of sQ such that Q is on the
evaluation list of the panel T containing x. The near field, sn is the remainder,
i.e. sn = s− sf . Figure 3 illustrates which panels are associated with the near
and far field. We now intend to approximate sQ as a Laurent-like expansion
about the center of Q. If this is done for all panels on the evaluation list of some
panel T , then we can simply sum the series to compute the far field. We now
present a lemma giving the Laurent-like expansion of a single multiquadric.

Lemma 3 Let t ∈ C and c ≥ 0 and

Φt(z) =
√

|z − t|2 + c2.
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Then for all z ∈ C with |z| >
√

|t|2 + c2

Φt(z) =
∞
∑

l=0

Pl(|t|2 + c2,−2<(tz), |z|2)
|z|2l−1

,

where

Pl(a, b, c) =
l
∑

j=b l+1

2
c







1
2

j













j

l − j





 b2j−l(ac)l−j.

Furthermore, for any p ≥ 0

∣

∣

∣

∣

∣

∣

Φt(z) −
p+1
∑

l=0

Pl(|t|2 + c2,−2<(tz), |z|2)
|z|2l−1

∣

∣

∣

∣

∣

∣

≤ 2
√

|t|2 + c2





√

|t|2 + c2

|z|





p+1

|z|
|z| −

√

|t|2 + c2
.

A proof of this can be found in Beatson, Cherrie and Newsam [16]. The next
lemma is merely an extension of Lemma 3 and requires no proof.

Lemma 4 Let ti ∈ C, |ti| ≤ r and di ∈ R for 1 ≤ i ≤ N , c ≥ 0 and s be the
multiquadric

s(z) =
N
∑

i=1

di

√

|z − ti|2 + c2.

We define the polynomial Ql to be

Ql(z) =
N
∑

i=0

diPl(|ti|2 + c2,−2<(tiz), |z|2),

where Pl is the polynomial defined in Lemma 3. Let p ∈ N0 and

sp(z) =
p+1
∑

l=0

Ql(z)

|z|2l−1
.
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Then, for all z such that |z| >
√
r2 + c2,

|s(z) − sp(z)| ≤ 2M
√
r2 + c2

(√
r2 + c2

|z|

)p+1 |z|
|z| −

√
r2 + c2

,

where M =
∑N

i=0 |di|.

At this point we can evaluate the Laurent-like expansion of sQ centered at
the origin. By making the substitution z = x − u in Lemma 3 where u is
the center of the panel about which the expansion is taken, we find that the
terms in the series involve convolutions as discussed in [16, Section 7]. An
alternative approach is to evaluate the series about the center in the first
instance. Therefore we shift the center of a given panel to the origin and
all points in that panel will move close to the origin. Computing the series
centered at the origin using Lemma 4 is thus equivalent to computing the
series about the center of the panel. This has to be done for every panel at all
levels in the domain.

At this point we have an expansion for all panels at all levels centered at the
center of the panel. We are now ready for evaluation.

The error in the truncated laurent like series expansion has been shown to be
O(σp) for some σ < 1. We therefore choose p ≈ log ε

log σ
hence the error is O(ε).

It is suggested that σ =
√

2
3

; see Greengard and Rokhlin [20]. Assuming the
distribution of points is approximately uniform, the number of points in the
near field is O(1 +N4−m). Therefore to make this O(1) we set m ≈ log4N .

Set-up of this hierarchical scheme should proceed according to the following
algorithm.

Algorithm 1 Setup

(1) Set m, the number of levels of the quadtree, to be the nearest integer to
log4N and choose p, the number of terms, to be the nearest integer to
log ε

log
√

2

3

where ε is the desired accuracy,

(2) form the quadtree down to m levels,
(3) compute the approximation sQ about the origin for all the lowest level

panels,
(4) shift the center of expansion from the origin to the center of Q for all the

lowest level panels,
(5) form the expansion for the higher level panels.

We then need to compute the interpolant at some point x using the following

15



algorithm.

Algorithm 2 Evaluation

(1) Locate the panel T containing x,
(2) find the evaluation list E of T,
(3) evaluate s(x) by summing the far field and the near field, i.e.

s(x) =
∑

Q∈E

sQ +
∑

i:xi∈T∪W

√

||x− xi||2 + c2

where W is the set of fine level panels neighboring T.

4 Numerical examples

4.1 Steady state problems

We set up the Dirichlet problems of the Poisson, Helmholtz, and Modified
Helmholtz equations on the unit square Ω = [0, 1]2.

∇2u(x, y) + λ · u(x, y) = f(x, y), (x, y) ∈ Ω, (18)

that has an exact solution

u(x, y) = sin
πx

6
sin

7πx

4
sin

3πy

4
sin

5πy

4
. (19)

For all wave numbers λ ∈ IR, the function f(x, y) is obtained by substituting
(19) into (18). The Poisson equation (λ = 0) is studied as in [31] with various
shape parameters on both regular and irregular centers placements. When λ >
0, it is a Helmholtz equation; when λ < 0, it is a modified Helmholtz equation.
The problems are more ill conditioned as |λ| increases. We experimented with
λ = −100, − 10, 0, 100, and 1000.

We computed the approximate solutions to (18) using the multiquadric RBF
with a constant shape parameter c = 1√

N
, on an N = n×n uniform grid where

n = 17, 25, 33, . . . , 65. We used 50 local points plus 9 special points and
computed the LS-ACBF, minimal-ABCF, and 2 sided-ACBF preconditioners
for all N . The resulting linear systems are solved with GMRES. For all tested
values of N and λ, GMRES converges and the number of iterations required
for convergence are reported graphically in Figure 4 to Figure 8. Furthermore,
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the DE-ACBF is also used on the Poisson problem for comparison in Figure
4.

We remind the reader that the condition number of an unsymmetric matrix is
not as informative as in the symmetric case, A small condition number does
not necessarily means fast GMRES convergence since convergence depends of
the clustering of eigenvalues. However, a good preconditioning scheme must
be able to reduce condition number and we included some information here for
completeness. Figure 9 reports the condition number of the Poisson problem:
the preconditioned matrices with LS-ACBF have the smaller condition number
than the 2 sided-ACBF, and lastly the minimal-ACBF. This behavior can also
be found in cases of λ = −100, −10, and 1000. Also for these cases, the trend is
monotonic like the Poisson equation and the minimal ACBF condition number
at N = 4225 is about 10 times larger than with LS-ACBF condition number.

The special case is the Helmholtz problem when λ = 100. From Figure 10,
we see that the condition numbers of the original RBF-PDE matrices do not
show the monotonic trend with N. Note that LS-ACBF has relatively stable
performance in this problem in terms of the reduction of condition numbers.
On the other hand, the 2 sided-ACBF fails to reduce condition number when
N = 4225 implying the 2 sided-ACBF scheme could be unstable.

We observe that LS-ACBF is more efficient when λ = 100 and λ = −1000,
see Figure 6 and Figure 8, respectively. The LS-ACBF preconditoner in [31]
is designed to handle ill conditioned problems; our numerical results further
confirm this claim. On the other hand, the minimal-ABCF, and 2 sided-ACBF
schemes are more efficient for the other values λ = −10, 0 and 100; small |λ|
values are associated with relatively better conditioned cases. In most cases,
the 2 sided-ACBF scheme converges no faster than the minimal-ABCF scheme
except the Helmholtz problem with λ = 100; see Figure 6.

The error was computed on a uniform 81 × 81 grid. We computed the mean

square residual error (MSR) given by MSR = 1
81

√

∑

i(U(zi) − u(zi))2, and the

maximum error (MAX) given by MAX = maxi |U(zi)− u(zi)|, where U is the
approximate solution and zi are the points on an 81×81 grid. The results for
all preconditioning schemes are consistent to at least 4 significant figures.

4.2 Time dependent problems

We now consider a diffusion equation on Ω = [0, 1]2

1

k
∇2u(x, y, t) =

∂

∂t
u(x, y, t), (x, y) ∈ Ω, (20)
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u(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T, (21)

u(x, y, 0) = 1, (x, y) ∈ Ω, (22)

where k is the inverse of heat conductivity. The exact solution is given in [11];
the same problem is used in [30] as a test problem. Let U `(x, y) ≈ u(x, y, `δt),
we employ the backward difference scheme to approximate the time derivative:

∂

∂t
u(x, y, t) ≈ U `+1(x, y) − U `(x, y)

δt
. (23)

For each time step, the differential equation (20) is approximated by

1

k
∇2U `+1(x, y, t) =

U `+1(x, y) − U `(x, y)

δt
,

that results in a sequence of modified Helmholtz equations,

∇2U `+1(x, y, t) − k

δt
U `+1(x, y) = − k

δt
U `(x, y), (24)

for ` = 1, 2, . . . , L, with boundary condition given by (21). It is well-known
that the accuracy of (23) improves as δt decreases. However, this results in a
large wave number λ in the modified Helmholtz equation. As we can see from
the previous example, this causes ill-conditioned matrix problems. For large
heat conductivity k, one is forced to use large time step δt in order to keep
the wave number to a reasonable size. In this example, we use k = 1000 and
δt = 0.01 to compute the solution when t = 1; the effective wave number is
λ = −105.

To solve the problem, the left-hand side of (24) is expanded using the multi-
quadric RBF with 33 × 33 data centers. The shape parameter is the same as
the previous example. The value of U 0 is given by the initial condition (22).
The resulting matrix systems are solved with GMRES preconditioned by ei-
ther LS-ACBF, minimal-ACBF, or 2 sided-ACBF. After each time step, the
GMRES solution (i.e., MQ coefficients) is transformed back to function values
using the fast multipole method that in turn become the right-hand vector of
the next matrix system. Furthermore, the solution at t = `δt is used as the
initial guess for the matrix system defined at t = (` + 1)δt. The numerical
solution at t = 1 is given in Figure 11, and the number of GMRES iterations
required for each time step is reported in Figure 12.
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5 Conclusion

We study different approximate cardinal basis function (ACBF) approaches
to precondition RBF-PDE systems. The four methods we study are based on
solving square problems (minimal-ACBF), on decay elements (DE-ACBF),
solving least squares problems (LS-ACBF), and both sided preconditioning (2
sided-ACBF).

The cost of solving using these schemes can be catalogued as

Set up Cost: minimal-ACBF < LS-ACBF < 2 sided-ACBF,
Run Cost: minimal-ACBF < 2 sided-ACBF < LS-ACBF.

The DE-ACBF is difficult to set up and is only applied to the Poisson problem.
However, the best preconditioning scheme is problem dependent. From our
study of various steady state problems, we found that the LS-ACBF is a
better choice for ill conditioned problems. On the other hand, the minimal-
ACBF and 2 sided-ACBF are more efficient for better conditioned problems.
In such cases, GMRES using the 2 sided-ACBF converges no faster than that
using minimal-ACBF. However, the set up and run cost of the 2 sided-ACBF
is more expensive than the minimal-ACBF.

For time-dependent problems, if one desires a solution of an ill conditioned
problem at large t, the “run cost” should be minimized and LS-ACBF is
preferred. On the other hand, if the problem size is small or the problem is
well conditioned, one may prefer the minimal-ACBF or even a direct method
to save the human set up cost. We wish to remind the reader that for large
scale FDM, FEM, or FVM problems, the preconditioners that are used on
parallel computers are often customized for the problem being solved.
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Fig. 4. Number of GMRES iterations required for convergence as a function of N
for the Poisson problem ∇2u = f .
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Fig. 5. Number of GMRES iterations required for convergence as a function of N
for the Helmholtz problem ∇2u + 10u = f .
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Fig. 6. Number of GMRES iterations required for convergence as a function of N
for the Helmholtz problem ∇2u + 100u = f .
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Fig. 7. Number of GMRES iterations required for convergence as a function of N
for the modified Helmholtz problem ∇2u − 100u = f .
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Fig. 8. Number of GMRES iterations required for convergence as a function of N
for the modified Helmholtz problem ∇2u − 1000u = f .
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Fig. 9. Condition number of the preconditioned matrices as a function of N for the
Poisson problem ∇2u = f .
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Fig. 10. Condition number of the preconditioned matrices as a function of N for the
Helmholtz problem ∇2u + 100u = f .
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Fig. 11. Numerical solution to the Heat problem (20) with k = 1000, and δt = 0.01
at t = 1 second.
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Fig. 12. Number of GMRES iterations required for each time step to find solution
in Figure 11.
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