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A Geometric Solution of a Cubic by Omar
Khayyam . . . in which Coloured Diagrams
are Used Instead of Letters for the Greater

Ease of Learners
Deborah A. Kent and David J. Muraki

Abstract. The visual language employed by Oliver Byrne in his 1847 edition of Euclid’s Ele-
ments provides a natural syntax for communicating the geometrical spirit of Omar Khayyam’s
eleventh-century constructions for solving cubic equations. Inspired by the subtitle (co-opted
for this article) from Byrne’s The Elements of Euclid, we rework one of these constructions by
adapting his distinct pictographic style. This graphical presentation removes the modern re-
liance on algebraic notation and focuses instead on a visualization that emphasizes Khayyam’s
use of ratios, conic sections, and dimensional reasoning.

1. INTRODUCTION For the present-day reader, the world of medieval Islamic al-
gebra is, in many ways, foreign terrain both conceptually and notationally. It is a
place where powers of a quantity correspond to actual geometrical dimensions. In
other words, x2 literally represents a square area, x3 a cube volume, and what we call
a cubic polynomial is expressed as a sum of parallelepiped volumes. To contempo-
rary students, this kind of geometric perspective on polynomial equations may seem
strange, and it is tempting to fall back upon the modern framework of algebraic nota-
tions and their manipulation. However, these familiar notions make it too easy to read
modern ideas into an historical text, thus interfering with the deeper appreciation of a
geometric perspective that is a hallmark of medieval Islamic mathematics. To capture
more of the eleventh-century geometric spirit of Omar Khayyam’s solution to a class
of cubic equations, we present here an adaptation using the colorful graphical language
of the nineteenth-century educator Oliver Byrne.

Khayyam’s proof of his geometric construction involves subtle shifts between lines,
surfaces, and solids as he invoked clever ratio arguments on lengths, areas, and vol-
umes. Recasting Khayyam’s argument in the pictographs of Byrne removes the obsta-
cle of heavy notation, allows immediate identification of the key geometrical objects,
and clarifies their role in the dimensional transitions of the proof. Furthermore, as
the Khayyam constructions rely on conic sections, this articulation also highlights the
use of their geometrical properties without the algebraic baggage of their Cartesian
quadratic equations. Here, we revive Byrne’s idiosyncratic vision in a demonstration
for how constructive geometry, the arithmetic of ratios and conic sections, work to-
gether to produce a geometrical solution to a cubic.

2. THE VISUAL GEOMETRICAL LANGUAGE OF OLIVER BYRNE Oliver
Byrne (1810-1880) is best remembered for the quirky and magnificent volume The
First Six Books of The Elements of Euclid in which Coloured Diagrams and Symbols
are Used Instead of Letters for the Greater Ease of Learners that first appeared in
1847 [3]. The work has recently enjoyed a resurgence due to the facsimile published
by Taschen in 2010 and again in 2013 [12], [13]. Byrne’s novel idea was to present
Euclidean geometry graphically, using diagrams printed in brilliant primary colours
instead of the more conventional — and, Byrne thought, cumbersome — system of
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sample �gure 1

Figure 1. A page showing Book III, Proposition 31 from Oliver Byrne’s colorful version of Euclid’s Elements.
In Victorian Book Design and Colour Printing, Ruari McLean describes Byrne’s pages as, “a unique riot of
red, yellow and blue; on some pages letters and numbers only are printed in colour, sprinkled over the page
like tiny wild flowers, demanding the most meticulous register: elsewhere, solid squares, triangles and circles
are printed in gaudy and theatrical colors, attaining a verve not seen again on book pages till the days of
Dufy, Matisse, and Derain” [14, p. 70]. Used with permission from University of British Columbia Special
Collections.

heavily labelled figures and densely-worded proofs still used in many Geometry texts
today.

Little is known of Byrne’s life or education. The publication record depicts him as a
prolific author of over one hundred books that indicate his pedagogical and mathemat-
ical interests were closely tied to engineering and surveying with a particular focus on
facilitating cognitive and computational efficiency for students in areas of calculation,
mensuration, and geometry. The frontispieces of these books label Byrne as a Profes-
sor of Mathematics at the Putney College for Civil Engineers and a consulting actuary
to the Philanthropic Life Assurance Society, as well as a civil, military, and mechan-
ical engineer. Byrne worked at the privately funded (and somewhat fringe institution)
Putney College from its 1840 opening until financial trouble forced closure in 1857
[16, p. 273]. After his tenure there, Byrne served as a surveyor of British settlements
in the Falkland Islands. He also continued to write books, some of which champion
him as inventor of patented calculating instruments and of “The system of facilitating
the acquirement of geometry, and other lineal arts and sciences by coloured diagrams”
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sample �gure 2

Figure 2. A page showing Book VI, Proposition 8 from Oliver Byrne’s colourful version of Euclid’s Ele-
ments. Whittingham’s spectacular craftsmanship is evident in the registration of the four, hand-printed colours.
Byrne’s radical pedagogical technique mixes with antique Victorian initials and medial s’s that were already
50 years out of date in Byrne’s day. The minimalist “layout and primary-color palette red, blue, yellow, black
. . . prefigures the art and design of 20th-century avant-garde movements” [9, p. B12]. Used with permission
from University of British Columbia Special Collections.

[2, cover page].
Byrne likely developed this pedagogical system out of his frustration with standard

methods of geometrical instruction. His first published effort to make Euclid’s Ele-
ments more accessible to students appeared in 1841, titled The Doctrine of Proportion
clearly developed, on a comprehensive, original, and very easy system; or, the Fifth
book of Euclid simplified [2]. The preface reads like a disgruntled instructor reciting
a litany of shortcomings of existing nineteenth-century texts on the subject of pro-
portions. Byrne’s goal, then, was to articulate proportion algebraically, arithmetically,
and geometrically, and to “endeavour to clear, without destroying the universality and
rigor of its conclusions, this extensive mathematical branch of that difficult, elaborate,
and intricate reasoning with which the prevailing opinion has so long charged it” [2,
p. xviii - xix].

Byrne initially envisioned a book printed with differently coloured pictographs, but
colour printing was prohibitively expensive. He instead advised readers to highlight
the figures with coloured pencils (Byrne, 1841, xvi). Still dedicated to his pedagogical
vision, Byrne later teamed up with innovative publisher William Pickering and printer
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Charles Whittingham, an influential duo in nineteenth-century British book produc-
tion. This collaboration brought Byrne’s colourful vision to life in the 1847 volume
[3]. In the text, Byrne relies on colors and shapes to communicate propositions and
proofs of Euclid’s Elements in pictographs to facilitate learning. Byrne claimed that
this approach enabled students to learn the Elements of Euclid “in less than one third
the time usually employed, and retention of this memory is much more permanent” [3,
p. ix].

Despite these ambitions, Byrne’s volume does not appear to have revolutionized
geometrical instruction. David Eugene Smith mentions Byrne’s Euclid in a footnote to
his 1915 edition of Augustus De Morgan’s A Budget of Paradoxes [4], where he writes
that “[t]here is some merit in speaking of the red triangle instead of the triangle ABC,
but not enough to give the method any standing” [4, p. 329]. Smith’s remark matches
De Morgan’s reported dismissal of Byrne’s book as a novelty. Dozens of unsold copies
were auctioned off at Pickering’s bankruptcy sale just a few years after the publication.
The bankruptcy is attributed to default on a loan Pickering had guaranteed [14, p. 13],
but the great production expense and slow sales of Byrne’s volume probably didn’t
help the situation. The fortunes of Byrne’s Euclid changed in the twentieth century. It
was featured as a remarkable volume in Ruari McLean’s seminal work Victorian Book
Design and Colour Printing [14] and is now valued at five-figure prices by modern col-
lectors. The contents of Byrne’s book, too, found favour in Edward Tufte’s work The
Visual Display of Quantitative Information [17]. Byrne’s streamlined visual presenta-
tion style seems appropriate to current sensibilities, digital illustration software, and
online publication. In the following, we adapt his pictographic scheme for purposes
of facilitating in modern readers a greater appreciation for the geometric thinking of
eleventh-century mathematicians.

3. THE GEOMETRICAL SOLUTIONS OF OMAR KHAYYAM Abū’l-Fath
Ghiyāth al-Dı̄n ‘Umar ibn Ibrāhı̄m al-Khayyāmı̄ al-Nı̄shāpūrı̄, usually known in En-
glish as Omar Khayyam, is best remembered as an astronomer and as the poet of the
Rubā‘iyāt, but he also published mathematical and philsophical works in a region near
present-day Afghanistan. His treatise on algebra, Risāla fı̄ al-jabr wa al-muqābala,
is one surviving mathematical work. A first translation into English by Daoud Kasir
[10] was published in 1931, with the most recent in 2000 by Roshdi Rashed and Bijan
Vahabzadeh [15] under the auspices of UNESCO. This major work by Khayyam is
his comprehensive study of constructing solutions for what modern readers know as
polynomials from linear through cubic degrees.

At the beginning of the Algebra, Khayyam explains how the lineage of topics in
his book starts with Archimedes. By the end of the ninth century, equations involving
squares and cubes were known to Islamic mathematicians who had access to newly
translated Greek mathematics, including work by Euclid, Archimedes, and Apollonius.
They also would have known about the three classic Greek construction problems. Is-
lamic mathematicians are generally credited with advances in algebra, developing and
advancing Hindu and Babylonian work [11, p. 271]. This work was heavily influenced
by the Islamic mathematicians’ exposure to Greek geometric texts and, more specifi-
cally, the idea that a mathematical problem was not fully solved without a proof. And
proofs, it seemed, were geometric. Part of the project of medieval Islamic mathemat-
ics was to justify algebraic rules through geometry [11, p. 271]. One of the earliest
Islamic algebra texts, by ninth-century mathematician al-Khwārizmı̄, includes geo-
metric proofs for algebraic algorithms for solving quadratic equations. In the tenth and
eleventh centuries, Islamic mathematicians subsequently solved some of Archimedes’
cubic equations using intersecting conic sections [11, p. 287], [15, p. 111]. Khayyam
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Problem:  Given three quantities 

, ,

construct a segment such that 

Geometric Statement of a Cubic Equation

+ + = .

Figure 3. Khayyam’s cubic problem “a cube and squares and sides equal to a number” presented in the style
of Oliver Byrne. Given the green, purple and blue segments, the red segment is the unknown that is to be
constructed.

would thus have been familiar with classical Greek mathematics as well as work from
his Islamic predecessors. Particularly, Khayyam clearly states in his preface that Eu-
clid’s Elements, the Data, and the first two chapters of Apollonius’ Conics are neces-
sary prerequisites, and to the best of his ability, sufficient references for understanding
the contents of the Algebra.

For Khayyam, numbers could only be positive, which meant there were fourteen
different types of cubics. For each cubic, he introduced the conic sections necessary
for the solution and proved that the constructed solution was indeed correct. Khayyam
viewed algebra as a method “to determine the numerical and the geometrical un-
knowns” [15, p. 111]. From the outset, he aimed to supplement numerical solutions
by geometric construction — which he did for both first and second degree polyno-
mials. However, Khayyam concluded that numerical solutions for cubic equations are
“impossible,” but using the intersection of conic sections he provided geometric solu-
tions for all cases.

This paper illustrates one case of Khayyam’s construction. It is the same as that
featured in The History of Mathematics: A Reader [11] as an excerpt from the Alge-
bra. The specific construction results in a segment that gives the solution to the cubic
problem shown in Figure 3 and described as “a cube and squares and sides are equal
to a number” [15, p. 141]. Note that “cube” corresponds to a modern x3 term, and
“squares” and “sides” would be, for us, multiples of x2 and x. A modern formulation
would then introduce coefficients to give a cubic polynomial, but in Khayyam’s time,
each term in this equation instead corresponded to a three-dimensional volume. No-
tably, a quartic, or any higher-order polynomial, would not exist in this reality [15, p.
114].

For Khayyam, the unknown quantity (x) represented a line segment that could be
used to build three boxes so that their combined volumes equalled a given value. The
first box is a perfect cube whose edges are the unknown (x3). The second box has
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square base with the unknown as edges, but a given height (ax2). The third box has
unknown height and a given square base (b2x). A solution, then, would be a segment
such that the total volume of these three boxes must be equal to a given volume (b2c),
which is described as having the same square base as the third box. The contemporary
notation for this Khayyam case would be the cubic equation x3 + ax2 + b2x = b2c
with positive coefficients. There is only one positive solution for this particular case.

Constructing a line segment of a length to accomplish this constitutes a geometric
solution to the cubic equation. It is a bit of a challenge to follow the full narrative of
Khayyam’s construction and proof in prose — introducing endpoint labels and using
line-segment notation is only a slight improvement. We begin our graphical retelling
by recasting the cubic problem as in Figure 3, which serves as an introduction to our
Byrne-like pictographs.

The three given quantities are each represented by a geometrical element shown in
Figure 3. Line segments with like color and line-style are congruent, so this equation
with four volumes is precisely the cubic problem described in the preceding paragraph.
The green line segment is the given height of the second box, and in modern language,
the coefficient on the square term. Likewise, the area of the square with purple edges
is the coefficient on the linear term, and the dark shaded solid has a volume that is the
polynomial constant. By our color convention, the base of the given volume has the
same area as the purple-edged square. The geometric solution of this cubic would be
a construction that produces the red line segment which satisfies the volume equation.

For the figures that follow, additional graphical conventions are introduced. Black
is used for neutral segments and curves with no implication of congruence. All two-
dimensional area quantities are identified by light gray shading, with no implication of
equality. All three-dimensional objects are rendered in perspective and their volumes
are identified by dark gray shading.

4. TWO EQUAL-AREA RESULTS Khayyam’s geometric solution for “a cube and
squares and sides are equal to a number” relies on a pair of equal area results, one from
Euclid’s Elements [6] and one from Apollonius’ Conics [8]. Figure 4 presents these
lemmas in pictographic form. The first equal area lemma is Euclid’s Elements, Book
VI, Proposition 13.1 In a semi-circle with given diameter, the square of a perpendicular
altitude is equal in area to a rectangle whose edges are pieces of the diameter delineated
by the altitude. A geometrical proof of this result is shown in the next section not for
completeness, but as an introductory demonstration of a proof with our Byrne-style
interpretation.

The second equal area result comes from Apollonius’ Conics, Book II, Proposition
12 [8].2 Apollonius actually proves a more general result for the constancy of a product
of distances from a hyperbola to its asymptotes, however, only the special case for
the rectangular hyperbola is needed here. Although we will not prove it, this case is
familiar to students who recognize xy = c as the Cartesian equation of a rectangular
hyperbola. In Figure 4, the red and blue dots indicate points on the hyperbola, whose
asymptotes are the black dotted lines. The statement that the areas are equal implies
that the products of their edge lengths must be equal. The choice of colours used in
Figure 4 correspond to those that appear later in Khayyam’s proof (Figures 7 and 8).

Figure 5 presents a proof of the semi-circle lemma as inspired by Oliver Byrne’s
pictographic style. It differs from Byrne’s proof of Book VI, Proposition 13 [3, p. 231]
as it replaces his notion of mean proportional with more familiar language of similar

1Note that this is a version of Euclid Book II, Proposition 14, which is equivalent to the classical extraction
of a square root [6, p. 216].

2This is more readily available in [7, p. 59].
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Geometrical Results Known to Khayyam

Given a semi-circle with 

=

2)  Given any two points
 

=

that is perpendicular to altitude  

diameter

and

on a rectangular hyperbola

(from Euclid VI, Prop 13)

,

then
.

(from Apollonius II, Prop 12)

with asymptotes ,

then

1) 

.

Figure 4. Two prerequisite lemmas for Khayyam’s proof presented in the style of Oliver Byrne. The first is the
classical extraction of a square root presented in Euclid’s Elements [6]. The second is a fact about hyperbolas
from Apollonius’ Conics [8]. The colour choices here foreshadow those appearing in Figures 7 and 8.

triangles.
Starting with the construction in Figure 4, connect the top of the altitude to each

of the endpoints of the diameter. Proposition 31 from Book III of Euclid’s Elements
(Figure 1) ensures the triangle formed is a right triangle. Then Proposition 8 from
Book VI (Figure 2) shows that all three triangles are similar triangles. This proof uses
the similarity of the two interior triangles that share the orange altitude. As this altitude
joins the diameter at a right angle, the ratio of the green+red segment to the orange
altitude is equal to the ratio of the orange altitude to the blue dashed segment. The
fourth step in Figure 5 is essentially geometric cross multiplication since the product
of two line segments is the area of a rectangle. As the above ratios are equal, then the
area of the square with orange altitude edge length is equal to the area of the rectangle
whose edges are the blue dotted segment and the green+red segment.

With these two lemmas in hand, and some facility interpreting the Byrne-style fig-
ures, we proceed to Khayyam’s constructive solution of a cubic.

5. KHAYYAM’S CONSTRUCTION In Khayyam’s presentation, he merges direc-
tions to construct a line segment that is a solution to a polynomial of the form “a cube
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Proof of the Semi-Circle Lemma

Add lines 

= .

to create triangles. 1)

Since 2)

by Euclid III, Prop 31,

is a diameter, 

is a right triangle.

By Euclid VI, Prop 8,  3)

~~

which gives ratios  = .

Restate the equality of ratios in terms of areas,   4)

: :

Figure 5. An illustrative proof of the semi-circle lemma from Figure 4 presented in the style of Oliver Byrne.
The fourth step is an example of shifting between the dimensions of quantities that is common in Khayyam’s
arguments. Specifically, the ratio in 3) means that the products of the edges are equal, so the rectangles in 4)
have the same area.

and squares and sides are equal to a number” together with a justification that the con-
structed segment is a solution [15, p. 141-142]. For clarity here, the construction has
been extracted and presented first in Figure 6, then Figures 7 and 8 prove how the
constructed segment satisfies the stated cubic. It is unimportant to the exposition, but
readers may be interested to know that the diagrams in Figures 3-8 are precisely scaled
using the cubic x3 + 8

16
x2 + 9

16
x = 33

16
with x = 1.

Recall from Figure 3 that one line segment, one area, and one volume are given in
the problem. (In modern algebraic terminology, these would be the given coefficients.)
From these quantities, the green, purple, and blue line segments are known. Assemble
these line segments as shown in Figure 6. Then construct a semi-circle with green+blue
as a diameter. The purple line segment locates asymptotes for a rectangular hyperbola
through the blue endpoint of the diameter. Book II, Proposition 4 from Apollonius’
Conics states that a hyperbola is determined by asymptotes and a point [8, p. 156-
157].3 The red point is the second intersection of the hyperbola and the circle, and
the horizontal segment connecting it with the vertical asymptote is the constructed
solution to the cubic.

6. KHAYYAM’S PROOF Our proof in Figures 7 and 8 begins by introducing to
the construction of Figure 6 two rectangles which immediately lead to the use of the
hyperbola lemma of Figure 4. The pictographs are left to tell the rest of the story, but
it is noteworthy that four changes of dimension occur in Khayyam’s proof.4

3Also in [7, p. 56].
4Interested learners could reflect on the case “cube + sides = squares + a number.”
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Khayyam’s construction

asymptotes positioned on .

Begin from an assembly1)
of the given segments.

Draw a semi-circle with   as diameter.2)

The horizontal line from the other intersection 

with the semi-circle to the asymptote

of the hyperbola 

gives the desired segment.

3) Draw the rectangular hyperbola through the point with

Figure 6. Khayyam’s construction of a solution to a cubic. The green, purple and blue segments are the
givens as shown in Figure 3. The intersection point produced by the semi-circle and the hyperbola determine
the desired red segment.

7. CONCLUSION A geometric solution to a cubic equation may seem peculiar to
modern eyes, but the study of cubic equations (and indeed much of medieval algebra)
was initially motivated by geometric problems. Modern readers tend to lack fluency in
reading proofs of this type without rewriting them in familiar algebraic notation. While
that can offer valuable insight, such translation sometimes obscures certain features
of historical mathematics in context. Adopting a presentation style similar to that of
Oliver Byrne — one that minimizes labeling and dense prose to rely instead on colour
and space — showcases the geometric nature of Khayyam’s construction of cubic
solutions. This approach also highlights the relationship of earlier geometric work —
on conic sections, on ratios, on doubling the cube — with the projects of medieval
Islamic algebra. In a mathematical culture where powers of x literally corresponded
to geometrical dimensions, solving cubic equations marked a significant achievement.
Although Khayyam presented constructions for geometric solutions to all types of
cubic equations, he was nevertheless explicitly aware that the arithmetic problem of
these cubics was still unsolved. This task remained open until solved by Gerolamo
Cardano in the mid-sixteenth century.
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Khayyam’s Proof

From each of 

By the equal area lemma for the hyperbola,

=

 Subtract common area

1) and , draw the rectangles formed with the asymptotes,

with = .

2)

=
, so that

.

3) Restate the equality of areas in terms of ratios of segments,

=: .:

.

Figure 7. Khayyam’s proof in the style of Oliver Byrne (part 1 of 2).

ACKNOWLEDGMENT. The authors would like to thank Tom Archibald and two anonymous referees for
feedback which improved this paper. Len Berggren and Nathan Sidoli generously shared their Arabic lan-
guage expertise. Thanks also to Derwyn Goodall for many design consults which greatly refined the digital
illustrations. The authors also appreciate the hospitable staff in the Rare Books and Special Collections at the
University of British Columbia Library. Deborah A. Kent received support from a Drake Faculty Development
Grant. Support for David J. Muraki was provided by NSERC RGPIN-238928.

REFERENCES

1. G. Alexanderson, review of The First Six Books of Euclid, edited by W. Oechslin, MAA Re-
views, (2010), http://www.maa.org/publications/maa-reviews/the-first-six-books-of-
the-elements-of-euclid.

2. O. Byrne, The Doctrine of Proportion Clearly Developed, on a Comprehensive, Original, and Very Easy
System; or, the Fifth Book of Euclid Simplified. J. Williams, London, 1841.

3. —, The First Six Books of The Elements of Euclid in which Coloured Diagrams and Symbols are Used
Instead of Letters for the Greater Ease of Learners, William Pickering, London, 1847.

4. A. De Morgan, A Budget of Paradoxes. Second edition. Edited and reprinted with the author’s additions
from the Athenaeum by D. E. Smith. Open Court, Chicago, 1915.

5. J. Fauvel, J. Gray, The History of Mathematics: A Reader. The Open Univ., London, 1987.
6. The Thirteen Books of Euclid’s Elements, Vol II. Edited by T. L. Heath. Cambridge Univ. Press, Cambridge,

1908.
7. Apollonius of Perga, Conics. Edited by T. L. Heath. Cambridge Univ. Press, Cambridge, 1896.
8. —, Conics. Translated by R. C. Taliaferro. Classics of the St. John’s Program, Annapolis, 1939.
9. S. Heller, Forms and functions, New York Times Sunday Book Review August 22, 2010.
10. The Algebra of Omar Khayyam. Edited by D. S. Kasir. Bureau of Publications, Teachers College,

10 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 November 14, 2015 4:24 p.m. May16KentMuraki.tex page 11

Then the squares are also proportional,

so the new ratio reduces by the common edge,

=: : :=

The second equality follows from the equal area lemma for the semi-circle,

=

Restate the equality of ratios in terms of volumes,4)

Add to both sides, so that 

+ =

Lastly, restore =
and unstack the first volume to verify the construction 

=+

.

.

.

=: : .

+

Figure 8. Khayyam’s proof in the style of Oliver Byrne (part 2 of 2).
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13. —, Reprint edition. Taschen, Köln, 2013.
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