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5.9 General approximation methods

Theoretical statistical computations frequently involve values of functions
such as tail areas from common probability distributions such as the nor-
mal, chi-squared, and Student distributions, and their inverses (percent
points or quantiles). With few exceptions, these functions do not have
closed-form representations, so that one must make do with approximations
that can be simply expressed. For the most common distributions there
are many standard approximations now in use.

Closely related to the problem of approximating probabilities and per-
cent points is the more general problem of approximating the distribution
of a function of a random variable X whose distribution is known. In this

section, we discuss in barest outline a few general methods that can be

used to obtain approximations that can be converted to useful computing
formule. Our focus will be on general aspects of computing tail areas and
their inverses. Section 5.10 will then deal with specific algorithms for a
few of the most common distributions. For a more complete discussion, in-
cluding a useful collection of algorithms, one should consult Kennedy and
Gentle (1980).

In the remainder of this section, we shall employ the following notation.
The random variable X will be assumed to have a cumulative distribution
function (cdf) given by Fx(t) = Pr{X < t}, with a density function Sx(t)
with respect to Lebesgue measure. Of interest will be approximations to
cdf Fx(t), and its inverse, Fx!(p), for 0 < p < 1. When we wish to
obtain either Fx(t) = p for small values of ¢ (so that p is close to zero),
or values of the complementary cdf Gx(t) = 1 — Fx(t) = [ fx(z)dz
for large t, we speak of evaluating the tail area of Fix, and we treat this
problem separately.

Kennedy and Gentle (1980) quite correctly point out that cdf 8, tail ar-
eas, and percent points are often used as intermediate quantities in compu-
tations, and thus may require high accuracy. A very simple example comes
from the literature of ranking and selection. Suppose that X 1 and X, are
independent, with X, ~ N(u,1) and X3 ~ N(0,1). Let Y = max(X,, X3).
The density of Y is given by p(y) = ¢(y —1)®(y) +$(y)®(y — u), where ¢(£)
denotes the standard normal density and ®(t) the corresponding distribu-
tion function. Computing E(Y) = [ yp(y) dy to six decimal places requires
evaluation of the integrand to at least six digits. Thus, for theoretical com-
putations it is important to have highly accurate approximations for such
fundamental building blocks as cdf’s and tail areas, even though for such

tasks as computing p-values in applied work much cruder approximations
P

will suffice.
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5.9.1 Cumulative distribution functions S
The distribution function {Fx () = Pr{X < t}|can be written as the integral

k #) — Fx(t) = \. ,3 Ix(z)dz (5.9.1)

which suggests that quadrature methods can be used to approximate the
integral. Indeed, numerical quadrature can often be a good choice, although
for specific common distribution functions alternative approximations can
be derived which either require less computational effort than quadrature
of similar accuracy, or which have guaranteed (small) error bounds, which
are generally not obtainable from the general quadrature theory.

Some general methods for obtaining approximations to integrals involve
series expansions, continued fractions, and rational approximations. These
methods are discussed in Section 5.9.4.

5.9.2 Tail areas

At first glance it would seem that computing the tail area G(t) for large ¢
would be easy; given an approximation for F'(t) one could simply evaluate
1 — F(t). Excellent approximations exist, for instance, for the cdf of a
normal random variable, so that normal tail areas would seem to be trivial
to obtain. Unfortunately, life is not so simple. Consider single-precision
floating-point approximation of 1 — ®(4) ~ 3.16713 x 10~%, in a format
that supplies five decimal digits. Then an accurate approximation to o(4)
is 0.99997, the complement of which, 3 x 10~%, is only good to a single
decimal place. Arguments much larger than four produce answers with no

.. ey
significant digits! fe \wl ..m.,..,V . NML_ \N.
5.9.3 Percent points y o

Let p be a probability in (0,1), and let F(z) denote the cumulative distri-
bution function of a random variable X. A point z, for which F(z,) =p

is called a pth quantile or fractile of F. If F is a continuous monotone
increasing function, then z, = F~!(p).

A common approach for evaluating z, is to solve for z in the nonlin-
ear system F(z) = p using any of the methods of Chapter 4. For many
standard distributions the density f(z) = F'(z) is available in closed form,
and adequate approximations to F itself are also at hand. In this case,
Newton’s method can be used effectively, provided only that a starting
value sufficiently close to the answer can be obtained.

COMMENT. For small values of p, computing F~! is an ill-conditioned
problem. This makes it very difficult to compute F~1! to a fixed absolute
accuracy. On the other hand, it is less difficult to compute percent points
to a given percentage accuracy. .




