CHAPTER 5

THEOREM 5.3 Independence of Eigenvectors

Let A be an $n \times n$ matrix. If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{v_1, v_2, \ldots, v_n\}$ is linearly independent and A is diagonalizable.

PROOF Suppose that the conclusion is false, so the eigenvectors v_1, v_2, \ldots, v_n are linearly dependent. Then one of them is a linear combination of its predecessors. (See Exercise 37, page 203.) Let v_k be the first such vector, so that

$$\mathbf{v}_{k} = d_{1}\mathbf{v}_{1} + d_{2}\mathbf{v}_{2} + \cdots + d_{k-1}\mathbf{v}_{k-1}$$
 (2)

and $\{v_1, v_2, \ldots, v_{k-1}\}$ is independent. Multiplying Eq. (2) by λ_k , we obtain

$$\lambda_k \mathbf{v}_k = d_1 \lambda_k \mathbf{v}_1 + d_2 \lambda_k \mathbf{v}_2 + \cdots + d_{k-1} \lambda_k \mathbf{v}_{k-1}. \tag{3}$$

On the other hand, multiplying both sides of Eq. (2) on the left by the matrix A vields

$$\lambda_k \mathbf{v}_k = d_1 \lambda_1 \mathbf{v}_1 + d_2 \lambda_2 \mathbf{v}_2 + \cdots + d_{k-1} \lambda_{k-1} \mathbf{v}_{k-1}, \tag{4}$$

because $Av_i = \lambda_i v_i$. Subtracting Eq. (4) from Eq. (3), we see that

$$0 = d_1(\lambda_k - \lambda_1)\mathbf{v}_1 + d_2(\lambda_k - \lambda_2)\mathbf{v}_2 + \cdots + d_{k-1}(\lambda_k - \lambda_{k-1})\mathbf{v}_{k-1}.$$

This last equation is a dependence relation because not all the coefficients are zero. (Not all d_i are zero because of Eq. (2) and because the λ_i are distinct.) But this contradicts the linear independence of the set $\{v_1, v_2, \ldots, v_{k-1}\}$. We conclude that $\{v_1, v_2, \ldots, v_n\}$ is independent. That A is diagonalizable follows at once from Corollary 1 of Theorem 5.2.

Diagonalize the matrix $A = \begin{bmatrix} -3 & 5 \\ -2 & 4 \end{bmatrix}$, and compute A^k in terms of k. EXAMPLE 1

SOLUTION We compute

$$\det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & 5 \\ -2 & 4 - \lambda \end{vmatrix} = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1).$$

The eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = -1$. For $\lambda_1 = 2$, we have

$$A - 2I = \begin{bmatrix} -5 & 5 \\ -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix},$$

which yields an eigenvector

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

For $\lambda_2 = -1$, we have

$$A+I=\begin{bmatrix}-2 & 5\\ -2 & 5\end{bmatrix}\sim\begin{bmatrix}2 & -5\\ 0 & 0\end{bmatrix},$$