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HMATHEMATICAL MODELING AND PARTIAL DIFFERENTIAL EQUATIONS

equations with respect to parabolic and hyperbolic equations. Thus, by studying the three
equations in (1.6.1), we discover the properties of solutions to all equations of the form
(1.6.2).

Exercises: Classification

1. Determine the set of points (x, y) where each of the following equations is elliptic, parabolic,
and hyperbolic:

@) xhu,(x, ) - yhu,(x,y) =0
b) xyu (x, y) — uix, ) +u =0
© 2u,(x, ) — 4 (x, ) + ufn, ) =0
(@) 2yu{x, ) + (x + Yuglx, ) + 2auy(x, y) = 0
(&) sin(xyhu (x,y) = 0
2. Consider the equation

Fy=p*—@+op—* —a) =0
Show that the following hold;
(a} The graph of F(p) = 0 is a parabola opening upward.
(b) If ¥ ~ ac < 0, then F(} = 0 has two real roots of the same sign. In this case, if
(@ + ¢) > 0, then the roots are both negative, and if (2 + ¢) < 0, they are both positive,
©) If 6% — ac = 0, then w = 0 is a root of F(u) = 0. In this case the other root is positive
or negative according to whether @ + c¢ is negative or positive.
(d) If b — ac > 0, then F(p) = 0 has distinct roots of opposite sign.

3. Which of the following differential operators is linear?

@ Llu] = u.lx, ) + 2Pulx, y) — w,lx, y)

(b) L[u] = ux_r(xr J’} - u(x! y)ux(xl Y) + uyy(xa J’)
() Llul = ufx, yufx, ¥} - i, (x, ¥)

(@) Llu] = sin(xyhe,(x, y) — cos(ry)u,ix, y)

Chapter 2

Fourier Series
and Eigenfunction Expansions

INTRODUCTION

In this chapter we introduce the first of the two principal tools we shall be using to solve
problems in partial differential equations: Fourier series, or more generally, eigenfunction
expansions.

It is easy to check that forn = 1,2, ..., Nand p, = nw/L, the function

u,(x, 1) = exp[ — pZ)sin(,x)
satisfies

ul(xv t) = un:(x! I)s 0 <x< L» t> 0
w0,7) = ull,t) =0

It is easily checked that for arbitrary constants C,, . . . , Cy the function U(x, ) given
by

N
Ux, ) = 2, Cufx, 1)
n=1

satisfies the partial differential equation and boundary conditions above. Clearly, at
t = 0 Ulx, §) reduces to

N
Ux, 0) = > C,sin(,x)
n=1

and hence in order to satisfy an initial condition of the form
U(x, 0) = F(x), 0<x<L

a3
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it is necessary to be able to find values for the constants C, such that

N

S Csin(p,x) = Fl), 0<x<L

n=|
If such constants can be found, then U(x, 1) is seen to be the solution to the initial-
boundary-value problem consisting of the partial differential equation together with the
inhomogeneous initial condition and the two homogeneous boundary conditions. We
show in Chapter 6 that if this problem has any solution, then that is the only solution.
Evidently, we will have constructed the unique solution to this initial-boundary-value
problem once the appropriate constants C,, are found.

For an arbitrary function F(x) it is not, in general, possible for any finite value of
N to find constants C, such that U(x, 0) = F(x). However, when N is allowed to become
infinite, then for a large class of functions F(x), the constants C,, can be chosen so that
the (now infinite) series not only converges but converges to F(x).

Although other mathematicians, including Euler, were working in the area as early
as 1750, this discovery is generally atiributed to the previously mentioned Joseph Fourier,
and series of the sort to be discussed in this chapter are called Fourier series. In a classic
work published about 1820, Theorie Analytique de la Chaleur, Fourier presented the
mathematical techniques on which this chapter and the next are based. Although his
ideas were essentially correct, they were not rigorously set forth, and Fourier had con-
siderable difficulty in convincing other mathematicians of his time that it is possible to
represent an arbitrary function as a series of periodic functions. Part of the confusion
was no doubt a result of confusion about the precise meaning of the term function. In
Sections 2.1 and 2.2 we introduce the notion of a square integrable function, and we
shall see that this interpretation of function is particularly suitable for discussing Fourier
series. A more substantial discussion of the space of square integrable functions is the
subject of Section 2.5.

In section 2.2 we shall see that a Fourier series in terms of the sine and cosine
functions is only a special case of a more general series expansion. Section 2.3 explains
how to find families of functions that are suitable for use in these generalized Fourier
expansions. Section 2.4 is a digression into the subject of discrete Fourier series, which
is of interest in connection with the second part of the book, where discrete solution
methods are discussed. Finally, in Section 2.6 we briefly describe the use of Fourier
expansions for functions of several variables.

2.1 FOURIER SERIES

Let f(x) denote an arbitrary function of x defined on the interval (—L, L) and write

- nmx . nmx
F&) ~ day + 2, acos —— + bsin — 2.1.1)
n=1 L L
A series of this form, where the constants a, and b, are yet to be determined, is called
a trigonometric infinite series. The series may or may not converge, and for those values
of x where it does converge, it may or may not converge to the value f(x). Of course,
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for the series to converge to f(x), it is necessary that the constants a,, and &, depend in
some way on the function f(x). It will be our first task to show that (2.1.5) below
expresses the necessary dependence of the constants a, and b, on f(x).

Elementary integration formulas show that for arbitrary integers m, n

mwx nmx 0, m # n
cos—cos—dx =<3L, m=n>0
-L L L
2L, m=n=10
L mux o onmx . |0, m#Fn
J_LsmLsdex—{L’ m=n>0
f in 7™ o6 ™™ 4 00 all;
_, sin 1 cos 7 x = 0, all integers m, n (2.1.2)

The set of relations {2.1.2) are referred to as orthogonality relations, and the family of
functions

{1, cos mx/L, cos 2mx/L, . . . ; sin mx/L, sin 2mx/L, . . .}

is called ar orthogonal family on the interval (—L, L).

Proceeding formally, if we multiply both sides of (2.1.1) by cos Max/L for a fixed
integer M and then integrate from —L to L, (2.1.1) becomes

Max M e
(f, cos T) ~ da, (1, cos —ﬂf) + 2 a, (cos = cos @)
n=1

L L L
+ Z b, (sin ET'_", cos Mmx 2.1.3)
n=] L L
Here we are using the notation
L
f. o= f _, fx)g(x) dx 2.1.49)

for arbitrary functions f(x) and g{x) defined on (— L, L). It follows from the orthogonality
relations (2.1.2) that for every n # M,

(sin nmx/L, cos Mmx/L) = 0
(cos nmx/L, cos Mux/L) = 0

Note that for n = 0, cos nwx/L = |,

Then if (2.1.1) is to be an equality, it must be the case that for each integer
M=01...,

(f, cos Mux/L) = ayL
That is,
ay = L/L{f, cos Mmx/L) forM = 0,1, ...

Similarly, multiplying on both sides of (2.1.1) by sin Mmx/L and integrating from —L
to L leads to
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EXAMPLE 2.1.1
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. Mnx . Maux = nmx . Mux
(f,sm 7 ) iao(l,sm 7 ) + a,,(cos 7 sin )

n=1

d . amx . Mux
+ HZI b, (sm T sin L )

‘Then the orthogonality relations (2.1.2) imply that in order for (2.1.1} to be an equation,
we must have

, sin Mmux/L) = b,L foreach M >0 .
Evidently, a necessary condition for {2.1.1) to be an equality is that the coefficients a,,

and b, in the series are related to f(x) as follows:

o, 1,...

Il

1t nwx
a, = E J'HL f(x)cos 7 dx, n

1t . nmx
b, = i j_L f(x)sm—L—dx, n=12,... (2.1.5)
When the coefficients a, and b, in (2.1.1) are given by (2.1.5), they are called the
Fourier coefficients for the function f(x) and the series (2.1.1) is called the Fourier series
for the function f(x).

Up to this point we have shown only that if the series (2.1.1) is convergent to fx),
then the coefficients a, and b, in the series must be given by (2.1.5). Of course, it was
to be expected that the coefficients would depend on f(x); (2.1.5) shows explicitly how
a, and b, are determined from f(x). Cur next task will be to find conditions sufficient
to ensure convergence of the series (2.1.1) with coefficients a, and b, given by (2.1.5).
This development may be more meaningful if we first compute the coefficients a, and
b, in a few simple examples and examine the resulting Fourier series. For convenience
in these examples, we take L = .

Consider .
_ 10 if—w<x<0
f& = {1 if0<x<m 2.1.6)
Note that no value has been specified for f{x) at the three points x = -, 0, 7. Since

the Fourier coefficients are calculated by integrating f(x), this will have no effect on the

Fourier coefficients {changing the value of the integrand at finitely many points does not

affect the value of an integral), but it suggests an interesting point: Functions that differ

at finitely many points have the same Fourier coefficients. We return to this point later.
Forn=20,1,...

1 ™ ' T
a, = —j F(x)cos(nx) dx = lj cos(nx) dx
wS-m T 40
After integrating, this reduces to
ag = 1
a, = 1/(nmsin(mx){f = 0 forn =1,2,...
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Note that the integration formula used to compute a, in the case n = 1, 2, . . . was not
the same one used to compute g,.
Similarly,
l T
b, = -j sinfx) dx forn=1,2,...
1 J0
-1 T 1=
= 2L cosy| = L—sostrm)
nw 0 n

Note that cos(n) = (—1)" for n = integer. Then

p =10 if n = even integer
" 2/nm if n = odd integer

This produces the following Fourier series for f(x):

1 2. 2 2
fF) ~-+ —sinx + —sin3x + —sinSx + - -
AR S

Inw
1 2 & sinf(2m — 1]
_—— + — ———— T L
2 w2 m— 2.1.7)

If we define the partial sums of this series by
Solx) = %
Six) =% + (2/msin x
Sy(x) = 4 + 2/msin x + (2/3mw)sin 3x

then plotting Sg, S, ;. . . versus x shows that with each additional term, the graphs of
the partial sums of this Fourier series draw closer to the graph of f(x) (Figure 2.1.1).
Note in particular that each of these three partial sums assumes the value % at each of

the points x = —, 0, ™ where f(x) was left undefined. an
— fix)
- SZ
- 3,
- 5
x=0 x=n
Figure 2.1.1
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EXAMPLE 2.1.2 - B fix}

Consider the function

fx) = x, - <x<q

Using (2.1.2), we compute, forn = 1,2, ...,

m

1" I {xsinmx  (—cos nx)
a, = — x cos(nx) dx = — - >
mtem ™ n n o

= { -

and forn = 0 . i 1 1 1

ay = j_ﬂxdx =0

Similarly, forn = 1,2, . ..

w ! _ . m
b, 1[ x sin(nx) dx = — [ X m + smznx]
at-m T n n

-

~2 cos(nm) _ -1+

n n
Then the Fourier series for f(x) in this example is Figure 2.1.2
2 2
F(x) ~ 2 sinx - sin 2x + gsin 3x - Zsin4x. ..
o (_ 1)n+l .
~2 Z] T sinnx 2.1.8) andforn=1,2,...
n= :
1 (° 1 ("
If we define @ = —xcosnxdx+—Lxcosnxdx
— m)
Six) = 2sinx 1 {xsinne  cosnx]|°
S5(x) = 2 sinx — sin 2x = T [_n_ + _nT]
Sy(x) = 2 sinx — sin 2x + % sin 3x .
. 1l |xsinnx  cos nx
: + = +
T no |,
then plotting S, S;, S3. . . versus x shows that including additional terms of the Fourier - _ 2(cosnm ~ 1)
series improves the approximation to the function f(x) (Figure 2.1.2). Note also that T n?
\ = — aE
each of the partial sums §,(x) assumes the value zero at x ™, W, | We also have, forn = 1,2, . . .,
EXAMPLE 2.1.3 | 1 1"
! b,,=—f —xsinnxdx-i-—f x sin nx dx
Consider the function TS 011- 0
o = 4, —m<x<® _1|xcosmx sinnx
T : ar n n? o
en : L]
- . +1[—xcosnx+sinnx] 0
i —_ =
g = — —xde+—| xdx=n : T n ||,
0 mJ- ™ Jo ‘
i

L
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40 Note that if £(x) is periodic with period P, then
s,
fix} 2
5 fx) = fx + P) = f(x + 2P) = - - - forallx
- . Evidently, if f(x) is periodic with period P, then f(x) is also periodic with period Q for
- = Q equal to any integer multiple of P. If it is necessary to speak of “‘the period’” of f(x)
— 5 unambiguously, then the period of f(x) is defined to be the smallest positive number P
: such that (2.1.10) holds.
- : For example, we have said that for each integer n the function sin nx is periodic
- i with period 2w, This is so, but the smallest number P such that (2.1.10} holds for
- F(x) = sin nxis P = 2w/n. Thus,
: -
| |
P x=w sin x is periodic with period 2.
Figure 2.1.3 sin 2x is periodic with period .
sin 3x is a periodic with period 27/3.
. A .
Then the Fourier series for f(x) is | nd 50 on
fx) = T i cosx — 54— cos Ix — - However, it is still correct to say that each gf these functions is periodic with period 2
2 0w L : ) sinice (2.1.10) holds for each of these functions with P = 2.
o 42 am — 1]-%os@m — Lx 2.1.9) : If £1(x), falx), . .., fu(x) are all periodic functions having a common period P,
=3 a le (2m then for any integer N, the function
. ; fer series, N
In this case, the partial sums of the Fourier s ; Fx) = Y £,
SO(X) = "IT/ 2 X n=|
§(x) = w/2 — (4/w)cos x is also periodic with period P. In particular, each of the partial sums Sy (x) associated
S,(0) = m/2 = (4/m)cos x ~ (4/9m)cos 3x with the Fourier series (2.1.7), (2.1.8), and (2.1.9) is periodic with period 2. Clearly,
. = ... the this peried is determined by the first nonconstant term in the Fourier series.
s » have the property that for k = 1,2, .. .t pe ¥
approach f(J-C) uniforn; _Th?t)isf’o:-hﬂaetireen —-pfn g:d a7 is a decreasing function of A function f(x) defined only on (— L, L) can be extended to (—, o) as a periodic
maximum difference |S,(x) — flx us function of period 2L in the following way. For each number z, —o <z < oo, there is
k (see Figure 2.1.3) ‘ a unique integer M such that —L =< z — 2ML = L. Then we define f(x) by
We now begin to develop the notions that will allow us to precisely describe and F) = fz — ML) for —o0 < 2 < a.L1D)
derstand some of the things we have noticed about these examples. ) 3
un The function f(x) is everywhere defined and is periodic with period 2L, and f(x) agrees
{ with f(x) on (—ZL, L}. The function f(x) is called the 2L-periodic extension of f(x).
Periodic Functions and Periodic Extensions _ The functions of Examples 2.1.1, 2.1.2, and 2.1.3 are each defined on (—, ).
i fined for all values of x is said to be periodic with period £ if : The following sketches show the 2m-periodic extensions of each of these functions on
A function f(x) define ot all x @2.1.10) the interval (-2, 21r):
f() = fx + P) for Example 2.1.1:
For example:
sin x and cos x are periodic with period 2. .
sin nx and cos nx are periodic with period 2w for all integers "
sin(nmx/L) and cos(nmx/L) ate periodic with period 2L for all integers n. | 2 . _— 2
- - - xX= n
Any constant function is periodic with period P for every value P. " " "
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Example 2.1.2:

Example 2.1.3:

-25 - x=0 L 2z

following facts about these extensions: ‘ .
Note tE;l.’car{r)lple 2. 1g 1: the function f(x) is not continuous on { —1r, 7) and hence fx) is

not continuous on ( — %, ). - )
Example 2.1.2: f(x) is continuous on (-7, m but f(x) is not continuous on

_m m - . - . .
( ,Ex)ample 2.1.3: f(x) is continuous and its extension 1s commu.ous._ From_ these
examples it is clear that the conditions under which the periodic extension is continuous

are as follows:

Lemma 2.1.1. () is continuous on (—, ) if and only if

(a) f(x) is continuous on {—L, L) and

M f(-=L) = flb).

There is something else we should notice about the exafnplcs. The Eourier sen;: :
(2.1.8) contains only sine terms while the series (2.1.9) contains only cosine terms. 10
see why this is the case, note that for each integer n,

cos nmx/L satisfics
flx) = f(—x) forall x (2.1.12)}:

sin narx/L satisfies 3
f(x) = —f(—x) forallx (2.1.13

Any function having property (2.1.12) is said to be an even function of x while any:

2.1 FOURIER SERIES 2

function having property (2.1.13) is said to be an odd JSunction of x. Most functions are

neither even nor odd, but any function can be written as the sum of an even and an odd
function as follows:

F&) = felx) + Folx) (2.1.14)
where
| ) = 3@ + f(—x)] = f(—2)
denotes the ‘‘even part of f(x)"" and
fo® = M) = f(=20] = ~fo~x)
denotes the ‘“‘odd part of f(x).”"

If
f@) = 4ay + X a,cos KLLI b,sin nmx
n=l| L L
then since cos nmx/L is even for n = 0, 1, ... and sin amwx/L is odd for n =
1,2, ..., it follows from (2.1.14) that

fE(X) = %a() + 2 a,c08 Ez-r—x
a=\
fox) = 2, bsin E%E
n=1

It f(x) is known to be an even function on (—L, L), then Folx), the odd part of f(x), is
identically zero and hence b, = 0 for cvery n. This is the case in Example 2.1.3. On
the other hand, if f(x} is known to be an odd function on (—L, L), as in Example 2.1.2,
then the even part of f(x), f.(x), is identically zero and a, vanishes for n = 0,1,....
When f(x) is neither even nor odd, as in Example 2.1.1, the Fourier series for J(x) will
have both sine and cosine terms in it.

For every even function, not only can we anticipate that b, is zero for n =
1,2, ... (without having to calculate the b,’s) but in addition it is the case that

5 (L
a, = ZL f(x)cosn—;"rfdx, n=0,1,... (2.1.15)

Likewise, for every odd function, in addition to anticipating that @, = 0 for n =
0,1, ..., we have

_ 2J’L . ATX _
b, = 7 Jo f(x)sm—L—dx, n=1,2,..,. 2.1.16)

Moreover, formulas (2.1.15) and (2. 1.16) suggest the following additional consequence
of these observations. Suppose we are given a function f(x) defined only on the ‘*half-
interval” (0, L). We have then two alternatives:

(a) We can define b, =0forn=1,2,...and compute the Fourier coefficients
a, for f(x) from (2.1.15). Then the Fourier series for Fix) will have only cosine
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terms in it and must therefore represent an even function. We refer to this ag
the half-range Fourier cosine series for f(x).
(b} We candefinea, = Oforn = 0, 1,2, . . . and compute the Fourier coefficients

b, for f(x) from (2.1.16). In this case the Fourier series for f(x) will have only
sine terms in it and must then represent an odd function. We refer to this ag

the half-range Fourier sine series for f(x).

Alternative {a) is equivalent to extending the function f(x} to the interval (—L, )
as an even function and then computing the Fourier coefficients in the usual way from

(2.1.6). Alternative (b) is equivalent to extending f(x) to the interval (—L, 0) as an odd §
function. We refer to these extensions as the even and odd extensions of f{x). If these }
extensions are themselves extended to the whole real line as 2L-periodic functions, we
obtain what we call the even 2L-periodic and odd 2L-periodic extensions for f(x). In the
next section we establish the fact that the half-range Fourier cosine—sine series for a

function converge respectively to the even—odd 2L-periodic extension of that function,
In the next chapter we shall see some applications of half-range series.

We have observed that if f(x) defined on (—L, L) is symmetric about the y axis,
then the Fourier series for f(x) contains no sine terms, and if f(x) is symmetric about
the origin, then the Fourier series contains no cosine terms. Other types of symmetry
cause other terms to be absent from the Fourier series for f(x). We shall not pursue this
here, but some of the problems at the end of this section explore the connection between
symmetries and the Fourier coefficients.

One point we do wish to make note of, however, is that the initial term in any
Fourier series is the term

1 L
bao = o |, 100 d

Clearly this is just the average value of the function f(x) on the interval (—L, L). Then
we can think of the Fourier series for f(x) as composed of the (constant) average-value
component plus all the periodic components that oscillate about this average value with
amplitudes equal to the Fourier coefficients. :

Convergence of Fourier Series

We begin our discussion of convergence for Fourier series by recalling a few facts about
convergence of infinite series of functions. Consider then an infinite family of functions
u)(x), u,(x), . . ., all defined on a common interval /. Associated with this family of
functions consider the infinite series

E (%)

2.1.17

If each of the functions uy(x) is of the form u{x) = ax — xg)¥, then the infinite series
is called a power series. If the terms u,(x) are all trigonometric functions, then the
series is called a trigonomeiric series. Fourier series are a special type of trigonometric
series.

i
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The series (2.1.17) defines a function S(x) that we refer to as the “‘sum’’ of the
series. The domain of S(x) is the set of points x in [ where the series converges and
the value of S(x) at a point of convergence is the value to which the series converges at
the point. Of course, this set of points may be empty, but as we shall see, under certain
conditions on the functions u,(x) in (2.1.17), the domain of S(x) is not empty.

ForN = 1,2, ... let Sy(x) be defined by

N
Sy(x) = kzl u(x) forxin/
Then the functions §,(x), $,(x), . . . form what is called the sequence of partial sums
for the infinite series (2.1.17). The convergence of the infinite series can now be defined

in terms of the convergence of the sequence of partial sums. In fact, there is more than
one “‘mode’” of convergence we need to define.

Deiﬁlnition. The infinite series (2.1.17) is said to converge to the sum S(x) on the inter-
vat I,

(a) in the mean-square sense if

JiISux) — 8P ds—0 asN—

(b} in the pointwise sense if

Foreachxinl, |Sy(x) — S(x)| =0 asN— w

(c) wniformly on I if

max ISy — S@—0 asN—

Each of these modes of convergence provides a way of describing how the graph
of Sy(x) draws close to that of 5(x) as N tends to infinity. For example, when the series

(2.1.17) converges uniformly on I to §(x), then for each € > 0 there is an integer
N, > 0 and an *‘e-strip,”’

Eo={(xy:S)-e<y<S0) +¢xinf)

such that for every N > N, the graph of Sy(x) is entirely contained in E.. This is the
case, for example, in Figure 2.1.3. )

. If the series (2.1.17) converges pointwise to S(x), this means only that for each x
in I, Sy(x) converges to S(x} but the rate of convergence may vary with x. In Figure
2.1.2 we see an example where S, (x) appears to be converging to S(x) fairly rapidly for
X b‘ctyveen —0.97 and 0.9, but the convergence for x = 0.99 is evidently slower.
This is an example of pointwise convergence that is not uniform.

_ Finally, mean-square convergence of S, (x) to S(x) ensures only that the area con-
tained between the graphs of S, (x) and S(x) decreases to zero as N tends to infinity. This
does .not then necessarily mean that Sy (x) tends to the value S(x) at every x in 1. In many
practical situations where our knowledge of the functions involved is not sufficiently

precise to support pointwise evaluations, it is natural to think of the mean-square mode
of convergence.
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Every series that is uniformly convergent is also convergent in the mean-square
and pointwise senses. However, there are mean-square convergent series that converge
neither pointwise nor uniformly, and there are pointwise convergent series that do not
converge in the mean-square sense and do not converge uniformly. A *‘litmus test”” for
distinguishing uniform from nonuniform convergence is contained in the following.

Proposition 2.1.1. Suppose the series (2.1.17) converges uniformly on / to the sum
S(x). If each of the functions u,(x) is continuous on I, then S(x) is necessarily continuous
on I.

It follows from this proposition that the series in Examples 2.1.1 and 2.1.2 cannot
converge uniformly on any interval [ of length longer than 2 since any such interval
will contain a discontinuity of the limit function S(x).

A useful test for determining if a given series does converge uniformly is the so-
called Weierstrass M-test. A more complete discussion of this and the previous result
can be found in most advanced calculus texts. A very good nontechnical discussion can
be found in Foundations of Applied Mathematics by Michael D. Greenberg (Prentice-
Hall, 1978).

Proposition 2.1.2 (Weierstrass M-test). A sufficient condition for the uniform con-
vergence on I of the series (2.1.17) is the existence of a convergent series of positive
constants 3, M, such that for all x in [/, )| =M, forn=1,2,....

Note that according to this proposition, the series in (2.1.9) is uniformly convergent -

on any interval I of finite length.
Consider now the following special case of the series (2.1.17),

©

1 . nmXx
an + ,,Zl a, Cos E‘E—x + b, Slﬂ_Lﬂ' (2.1.18)

Whether or not this is a Fourier series for some function f(x), we can use tests such as

the Weicrstrass M-test to determine whether the serics converges in one mode or another.
Conditions sufficient to ensure convergence of the series must then bear on the coefficients
a, and b, and can imply nothing about the sum S(x) to which the series converges. When
(2.1.18) is a Fourier series for a given f(x), then it is our aim to determine conditions
which are sufficient to ensure that the Fourier series converges fo F(x). It is clear that
such conditions must ther bear on the function f(x).

In arder to state these conditions on f(x), it will be convenient to define the notion
of a sectionally continuous function. First we introduce the notation f{x*) and f(x7) to
denote the limit of f(x) as we approach x from the right and left, respectively. Note that
any point x where f(x*) = ftx™) is a point of continuity for F(x). Then:

Definition. f(x) is said to be sectionally continuous if

(a) at each point x the limits f(x*) and f(x~) both exist and are finite and
(b) in any interval of finite length there are at most finitely many x such that Fx*)
is not equal to f(x7).
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()ll;;rl(z)uiv)l¥ ev;ry continuous function is sectionally continuous. The functions in Exam-

Eomimlm.us a; hez.ﬂlj.nzct?ge ;}((a)mples o’f functions that are sectionally continuous but not

. n f(x) = x7’ is an example of a function that i i
! . t is not sectionall

continuous on any interval that contai = () sj i S :

continuous ns x = 0 since neither f(0*) nor f(0~) are finite

o er'{'ll.lle clﬁss of secnonall.y continuous functions is a class of functions that is strictly

ger than the class of continuous functions. A still larger class of functions is the class

of square-integrable functi i i i
(_Lq’[ ot g unctions. The function f(x) is said to be square integrable on

) L
f_L FOP dx < o

iv:xiy se;tlonally continuous function is square integrable on (—Z, L), but the converse

- ‘Z Sei, 2; e"‘:;g‘[’:]e,nf ﬁr) = x™ '/ is square integrable but is not sectionally continuous
- . shall have mo i i i

Chapter-, re to say about square-integrable functions later in the

Now we can state some conditions under which the Fourier series for f(x) converges

to f(x).

Theorem 2.1,1.  Suppose that f(x) is defined on the i f
: . n the int 1({—
the 2L-periodic extension of f(x). merval (=L ) snd et 09 denote

(a) If f(x) i:s square integrable on (~L, L), then the Fourier series for f converges
to f(x) in the mean-square sense on (—L, L).

(b} If f(x) and its (licnvat.ive dfdx[f(x)] are both sectionally continuous, then at
each x the Fourier series for f(x) converges pointwise to the value

HAG) + Fx)]

© If f(x) is continucus and [ f(x)]‘ is sectionally continuous, then the Fourier
series for f(x) converges uniformly to f (x).

The theorem has the following corollary describing the conditions under which we

can dlffereﬂtlate the I ourer senes fOl’ l (x) alld cxpect the d VE|
.

Corallary, With the notation of the theorem we have:

(d) If f(x)is cont;nuous and if [f(x)]" and [f(x)]" are both sectionally continuous
then ‘the F(?uner series for f(x) converges uniformly to f{x). In addition thf;
founer series for f(x) may be differentiated, term by term, and at each J:T thi
differentiated series converges pointwise to the value , )

A + dfe)
(e) If f (.x) and [f (x_)]’ are both continuous and if the second derivative, [f(x)Y", is
sectionally continuous, then the Fourier series for f(x) converges uniformly, to

f&). In add.itiorll, the lfourier series for f(x) may be differentiated, term by
term, and this differentiated series converges uniformly to [ f 7.
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Note that with the exception of part (a) of the theorem, the convergence properhe.:s <.)f
the Fourier series for f(x) are determined bpy the smoothness Propertles of. the p:er:odlc
extension f(x); the smoother the function f(x), the stronger is the sense in wh:c_h -the
Fourier series for f(x) converges. Observe also that we do .not ment}on dlfferen_uatmg
the Fourier series for f(x) unless f(x) is at least continuous with a senctlonally cgntmuops
derivative. Without at least this much smoothness the derivative of f(x) may fail to exist
at some points and the differentiated Fourier series c.ould not converge. g

Proving the Fourier convergence theorem is a dlfﬁcult.ex.ermse in real analyis. 1.1ch
an effort would be out of place in this book, whese focus is 1_ntended to be the solution
of partial differential equations. Instead we illustrate the meaning and use of the theorem
with some examples.

Consider the function

-1 for—m<x<0
g = 1 for0<x<T
Then g(x) is related to the function f(x) of Example 2.1.1 by the equation
glx) = 2[fx) — %

and the Fourier coefficients for g(x) are related to the Fourier coefficients for f(x) in the
same way. That is,

glx) = 4 i (2m — 17 'sin(2m — Dx
T om=1

The 2m-periodic extension of g(x) is the function Z(x) whose grap11 on the ipterval
[ — 3w, 3w] is shown in Figure 2.1.4. It is evident from the graph that §(x) is sectionally
continuous but not continuous. In particular,

F0%*) = +1 doesnotequal —1 = g07)
gm*) = —1 doesnotequal +1 = glw™), etc.

Thus g(x) has a “‘jump discontinuity’’ at every integer lr}ultiple of mr, bu.t on any ‘interfva_al
of finite length, there are only finitely many of these jumps. The denvatw.e [23(x)] 1_::
also sectionally continuous; in fact, the derivative of g(x)‘ is zero at each point where :1
is defined. At the integer multiples of m, the derivative is not defined, but the left an
right limiting values for [§(x)]’ at these points do exist.

g™ (x)

—3n -2z - o x 2n 3

Figure 2.1.4
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It follows then from part (b) of the Fourier convergence theorem that the Fourier
series for g(x) converges pointwise to the value

— = -y - J&(x) ateach x where § is continuous
bge™) + g6 {0 at integer multiples of o

Note that since §(x) is not continuous, the convergence of this Fourier series could not
be uniform as this would violate Proposition 2.1.1 an

Note also that the differentiated Fourier series does not converge since the nth term
of the differentiated series fails to go to zero. This is consistent with the fact that g(x)

is not continuous and hence lacks the minimal amount of smoothness required for dif-
ferentiating its Fourier series.

Consider the function

G(x) = |x, —r<x<y
This is just the function of Example 2.1.3, where we found the Fourier series to be

4 o
g - EI @m — 1)"%cos@m — 1)x
e

The graph of Example 2.1.3 of the periodic extension G(x) shows that G(x) is continuous
for all values of x. The derivative [G(x)]’ is Just the function g(x) from Example 2.1.4
and hence [G(x))' is sectionally continuous. Then part (c) of the Fourier convergence
theorem implies that the Fourier series for G(x) converges uniformly to G(x) on
(—o0, o).

Compare this with the function
Flx) = x, -_—T<x<T

whose Fourier series was found in Example 2.1.2 to be given by (2.1.8). The graph of
the periodic extension F(x} was also shown previously, and it is clear that F(x) is sec-
tionally continuous but not continuous. The derivative (FCOT is also sectionally contin-
uous; [F )] = 1 at each point where it is defined. At odd-integer multiples of 7, F(x)
has a finite jump discontinuity, and so the derivative [F)Y is not defined, although its
left and right limits at these points do exist. Then part (b) of the Fourier convergence
theorem implies that the Fourier series for F(x) converges pointwise to the value

P z - — | F(x) at points of continuity
HFe®) + Feo) = {0 at odd-integer multiples of &

It is striking that although both F(x) and G(x) are continuous on the interval
(—, ) and, in fact, F(x) is the smoother of the two functions there, the Fourier series
for G(x) converges more strongly than the Fourier series for F(x). Evidently the conver-
gence of the Fourier series for a function is controlled by the smoothness of the periodic
extension of the function. As Lemma 2.1.1 implies, smoothness of the function does not
necessarily imply smoothness of its periodic extension.
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Note that the function G(x) is continuous and G(x) has as its derivative the sec-

tionally continous function g(x), which also has a sectionally continuous derivative [which

is then the second derivative of G{x)]. Then part (d} of the corollary to Theorem 2.1.1
implies that the Fourier series for G(x) may be differentiated, term by term, and the
resulting series must then converge pointwise to the value

HEOH + HGH) = Hal™) + £
This conclusion can be verified by differentiating the Fourier series for G(x), term by
term, and observing that one does in fact get the Fourier series for g(x). On the other

hand, F(x) does not satisfy the conditions of the corollary to Theorem 2.1.1, and one
sees that differentiating the Fourier series (2.1.8) for F(x) leads to the series

2 2 (—1)"*'cos nx
n=|
Not only does this series not converge to the derivative of F(x), but the series is obviously
divergent since the nth term does not go to zero. As with the function Z(x} in the previous
example, F(x) lacks the minimal smoothness required for differentiating the Fourier
series. an

Exponential Form of Fourier Series

We have seen that under certain conditions a function f(x) defined on the interval (—L,
L) can be represented as an infinite series of the form (2.1.1}. In view of the Euler
identity, exp[i6] = cos 6 + isin 9 (i denotes V' — 1), the series has the alternative form
Fx) ~ ¢,exp %‘ (2.1.19)
where the coefficients ¢, can be expressed in terms of the a, and b, by substituting the
Euler identity into (2.1.19), collecting terms, and comparing with (2.1.1).

Instead we will find the coefficients c, directly in terms of f(x) as follows. For n
equal to any integer, let

E(x) = explinmx/L] (2.1.20)

and iniroduce the notation

L
«F, G» = LLF(x)E(x) dx 2.1.21) }

Here G(x) in the integrand denotes the complex conjugate of G(x). In particular,
E (x) = exp{—inmx/L]
Then it is easily shown that

«E,, Ep = {gL zf'; 2.1.22)

EXAMPLE 2.1.6
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These are the orthogonality relations for the family of functions {E,(x) : n = integ
the interval (—L, L). We can use the relations (2.1.22) to find the coefficients ¢
same way we used the orthogonality relations (2.1.2) to find the a, and b,,. Th;
(2.1.19) is an equation, then (formally at least) we have, for fixed integer M,

«f, Eyp» = 2 C, «Ep, By = cpy2L
This leads to
I
=37 f_L FOOE,(x) dx (2
The series (2.1.19) with the coefficients ¢, given by (2.1.23) is called the expo
form of the Fourier series. The exponential form of the Fourier series is com

equivalent to the form (2.1.1), and in fact, substituting the Euler identity into (:
shows immediately that

_ [Ha, - b)) forn

0,1,...
" ¥{a, + ib,) forn

~1, =2, ... (:

In view of this equivalence, the Fourier convergence theorem applies v
change to the exponential form of the series.

Consider the function defined on the interval (—~m, w) by
f) = {(1) if x| < a

if —mwm<x< ~g or a<x<w

Here a denotes a positive constant less than .
Then

1 [ .
Cp = -2—; I_a 1 exp[ —inx] dx

a

1 ,
= ot Pl i)

-a

1
= — sin na, n=—1,1,-2,2,...
nw

and ¢, = a/m.
Then

a 1 . . 1 ,
= — 4 —_— A 0] nx
h63] - ’;{0, p (sin ra)e néo - (sin na)e

This is the exponential form of the Fourier series for this function f(x). Note th

sin(ra)/n = sin{—~na)/(—n)
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and hence the sum over positive # and the sum over negative n can be combined to give

s Als

| . )
+ z — sin nale™ + e "™}
>0 AT

f(x)

2
= — + ¥ -=sin na cos nx
™ a>0 AT
That is, this is the trigonometric form of the Fourier series for this f(x). This example
clearly illustrates the equivalence of the exponential and trigonometric forms of the
Fourier series. il

Our discussion of Fourier series up to this point has dealt with the so-called classical
aspects of the subject. We have scen that when the coefficients a, and b, are related to
the function f(x) as described in (2.1.5}, then the series (2.1.1} converges to the function
f(x). The mode of convergence is dependent on certain properties of f(x) explained in
Theorem 2.1.1. The conditions sufficient to ensure convergence for the Fourier series
are mild compared to what is required to ensure convergence of other forms of infinite
series. For example, power series converge to a function in a neighborhood of a point
only if that function is analytic at the point.

We have seen also that the Fourier series may be expressed in the alternative form
(2.1.19). Of course, this form of the series is completely equivalent to the form (2.1.1);
in fact, the coefficients ¢, and the coefficients g, and b, are related by (2.1.24). In
addition, for functions f(x) defined only on the ‘‘half-interval’’ (0, L), we have the so-
called half-range sine or cosine series, which converge to f(x) on (0, L) and converge,
respectively, to the odd or even extension of f(x) on the interval (—L, 0).

All of this is part of a more general theory we develop in the next section.

Fourier Series

The following functions are defined on (—L, L).

(a) 1

—t— (b) L

I !

| I

| 1

1 ]

I ]

I 1
L 1 1 j el I |
-L -2 0 LR L -L -2 0 2 L

d

(©) L2 @ L2
L I L I
-L -L2 0 L/2 L -L -L/i2 0 L2 L
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1. Compute the Pourier coefficients a,, and &, for each of these functions and sketch the graph
on (—2L, 2L) of the function to which the Fourier series converges.

2. Compute the coefficients ¢, for the exponential form of the Fourier series for each of the

functions (a)-{d).

3. Tell whether the Fourier series for the functions f(x) in {a)-(d) converge pointwise or uni-
formly. Tell whether the differentiated series converges to the derivative of f(x).

4. Compute the Fourier coefficients a, and b, for each of the following functions:

@) f(x) = sinx, —w<x<T
(b) f(x) = sin ix, -—m<x<aa
{©) f(x) = [sin A, —m<x<m

-2 <x<wf2
—-m<x< —wf2,wft<x< 7

@ f) = {g?s %

_ Jsiny, —w2l<x<m/2
(€} fi) = {0, —m<x< -2, wRR<x<m

5. In parts (a), (b), and (c) of Exercise 4, cach of these Fourier series is missing some terms;
that is, some of the coefficients a, and b, are zero. In each case, explain the reason for the
missing terms. For example, the f{x} in (¢) is symmetric about the lines x = O and x = =/2.
Such symmetry will cause some of the Fouriet coefficients to vanish. In each of the five cases,
calculate the coefficients, see which, if any, vanish, and examine the graph of f(x) for sym-
metries. Then try to connect the missing terms with the symmetries. '

6. Compute the Fourier coefficients a, and b, for the following functions:
(a) flx) = x2, -l<x<1
(b) fx) = |4, —-l1<x<l1

_lx+ 1l if-1<x<0
(c)f(x)_{l—x it 0<x<1
@ fy=1-% -l1<x<lI

b

For each of the funglions f(x) in Exercise 6, sketch the graph on the interval (—2, 2) of the
periodic extension f(x). Also sketch the graph of the derivative of the periodic extension.
Does the differentiated Fourier series converge to this derivative in any of the four cases?

8. Write the Fourier series for the functions:
_ )t if-mf2<x< /2
@ f(x)_{o if —m<x<-m/2,m2<x<m

_)x if —w/2<x<7/2
(b) gl = {11‘2/4 if —m<x< —wf2, w2 <x<mw

_J2x if —wmf2<x < w/2

© o) = {0 if-m<x<-w/2,w/2<x<m

Use the Fourier series of Exercise 8 to discuss the following: Which of the functions f(x) or
£(x) has as its derivative the function (x)? Explain what is wrong with the following statement:
**Since f(x) and g(x) differ by a constant, they have the same derivative.’” Each of the functions
f and g is an antiderivative of £. Which of the two has as its Fourier series an antiderjvative
of the Fourier series for 4?7

10. Each of the following functions is defined on the interval (@, 1).
_ JO ifa<x<1,a = positive const
(a) f(x)_ 1 1f0<x<a

>
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11.

12.

13

14.

15.
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1 ifd—s<x<t+ s, s=comst,0<s<d

®) fix) = {0 fo<x<d-ss+i<x<l

For each of the functions (a) and (b) write a Fourier cosine series. Sketch the graph on the
interval {—2, 2) to which the series converges. Does the cosine series converge pointwise or
uniformly? Discuss whether the differentiated Fourier series converges to the derivative of

).

For each of the functions (a) and (b) in Exercise 10 write a Fourier sine series. Sketch the
graph on the interval (—2, 2) to which the series converges. Does the sine series converge
pointwise or uniformly? Discuss whether the differentiated Fourier series converges to the
derivative of f(x).

Use the Fourier half-range series to discuss the following statements:

(a) The derivative of an even/odd function is odd/even.

(b) ¥ f(x} is defined on [—L, L] and is odd, then f(x) vanishes atx = 0, L, —L.

{c) If f(x) is defined on [—L, L) and is even, then the derivative f'(x} vanishes at the points
x=0,L, —L.

Tell whether each statement is true or false. If the statement is true only under special con-

ditions on f(x), describe those conditions.

The following functions are defined on the interval (0, #):

folx) = x, 0<x<m

_)x fo<x<m/2
Fix) = {'rr—x fwf2<x<m

_ 1= if0<x<af2
fx = {x— n fm2<x<m

Write a Fourier sine series and Fourier cosine series for each of the three functions. Then

answer the following questions:

(a) For each of the six series, sketch the graph on (—w, ) of the function to which the series
converges.

(b) For which function does the sine series contain no terms of the form (i) sin 2nx or (ii)
sin(2n — 1)x.

(¢} For which function does the cosine series contain no terms of the form (i) cos 2nx or (i)
cos(Zn — Dx.

In order that f(x} defined on {—, 1] has a continuous, 2w-periodic extension, it is necessary
and sufficient that (i) f(x) is continuous on [—r, w] and {ii} f(7) = F{—~m). Under what
conditions is the 2m-periodic extension continuously differentiable (i.e., f is continuous, to-
gether with its first derivative)? Carry this further and find conditions on f sufficient to ensure
that £ is continuous, together with each of its derivatives up to order M.

Suppose that f(x) defined on [ — 1, 7] has a continuously differentiable 2n-periodic extension.
Then show that the Fourier coefficients for f(x) must satisfy

laf =C/n and |b|=C/n, n=12,...

where C > 0 denotes a constant that is independent of . Show that if f is continuous, together
with its derivatives up to order M, then there exists a constant C = 0 such that

mMla|=C and WMb|=C, n=12...
fHint: Integrate by parts.]

22 GENERALIZED FOURIER SERIES 55

16. The function f(x) = — x is defined for 0 < x < |. Show that the Fourier sine series for f(x}
is

f) =2 2 (nm) " 'sin nax
n=|
Integrate this series term by term to obtain the series

gx)y=¢C—-2 2 (n) ~2cos nmx

a=1

where C denotes a constant of integration. Find C such that g(x) = x — x2/2. Hint:

3 a?=jm?
ne |
17. Compute the Fourier cosine series coefficients for the function g(x) = x ~ x%/2 defined on
0 < x < 1 directly and compare with the results of Exercise 16.

18. Compute the Fourier cosine series coefficients for the function
h(x) = 2/ sin mx/2, 0<x<1

If this series is differentiated term by term, does the resulting series converge to A'(x} =
cos mx/27

2.2 GENERALIZED FOURIER SERIES

We show in this section that the Fourier series expansion of a square-integrable function
in terms of sines and cosines is really an abstract version of an operation that is already
familiar to many of the readers of this book. We are thinking of the operation of writing
an arbitrary vector in R? or R? in terms of a basis. Engineering texts frequently refer to
the basis vectors in &> as i, j, and k. Then the vector

v=oal + b +ck

denotes the directed line segment from (0, 0, 0) to (a, b, ¢). We begin by recalling a
few salient facts about RY.

Vector Space R

Very carly in the study of the applications of mathematics, one encounters the techniques
of vector algebra. Often vectors are first presented as directed line segments, and the
operations of forming linear combinations of vectors are carried out geometrically by
means of the so-called parallelogram law. Such methods are inconvenient for computa-
tional purposes and do not readily generalize. This motivates the introduction of an
orthonormal basis and the description of vectors in terms of components. In this setting,
vectors are generally written as N-tuples of numbers x = (x,, . . . , xy). We may interpret
this to mean the following:

x=x|e|+12ez+"'+x~e~



