Homework \#5 • MATH 322 • Contours \& Complex Integration

- submit your write-up into your Section's box by noon, Friday 13 October.
- please acknowledge collaborations \& assistance from colleagues.
- note: problem C) should be submitted with Homework \#6.
A) Complex-Valued Trig \& Hyperbolic Functions (1 page for each problem, 10pts) Problems \#2 (page 103), \#13 (page 104), and \#16 (page 108).
B) Arcs \& Contours (1 page for each problem, 10pts) Problem \#1b (page 115). Problem \#4 (page 115-6) illustrates an alternative approach for evaluating real-valued integrals. Include a final statement explaining how these integrals are treated using the regular calculus \& the relative advantages/disadvantages of each method. Finally, problem \#2 (page 121) introduces rather confusing notation (by using z in two different ways), please work the problem by using the modified notation:

$$
\begin{aligned}
w(\theta) & =2 e^{i \theta} \\
W(y) & =\sqrt{4-y^{2}}+i y
\end{aligned}
$$

where the focus is on verifying that $W(y)=w(\phi(y))$.
C) Contour Integrals (2 pages max, 10pts, due 20 October) Problems \#3 and \#4 (page 129).

* Good Practice The following problems are noteworthy, but are not part of the submitted assignment:
$\# 3,4,10,11,14$ on pages 104-5.
$\# 6,14$ on page 107.
\#5 on page 121.
\#11 on page 130 .

