Homework \#6 • MATH 322• Theorems on Contour Integration

- submit your write-up into your Section's box by noon, Friday 20 October.
- please acknowledge collaborations \& assistance from colleagues.
C) Contour Integrals (2 pages max, 10pts, from last week) Problems \#3 and \#4 (page 129).
D) Integration \& Antiderivatives (3 pages, 15pts) Before embarking on this problem, read carefully the discussion for Example 4 from Section 43.
Consider instead the complex contour integral

$$
\int_{C} z^{1 / 3} d z
$$

where the contour C is either C_{1} or C_{2} of Figure 53 , and carry out the following steps:
i) Give a branch definition for $f_{1}(z)=z^{1 / 3}$ for which $f_{1}(-3)=-\sqrt[3]{3}$ over a domain that includes $z=3$ and a contour C_{1} (from $z=-3$ to 3).
ii) What is the value of $f_{1}(3)$?
iii) What is the value of the contour integral following C_{1} ?
iv) Give a branch definition for $f_{2}(z)=z^{1 / 3}$ for which $f_{2}(-3)=-\sqrt[3]{3}$ over a domain that includes $z=3$ and a contour C_{2} (from $z=-3$ to 3).
v) What is the value of $f_{2}(3)$?
vi) What is the value of the contour integral following C_{2} ?
vii) Explain clearly how the antiderivative formula is used to obtain the different results for the contours C_{1} and C_{2}.
E) Square Root \& Area (one separate for page each, 10pts) Problems \#6 and \#7 (page 156). In $\# 7$, be clear that all of the requirements for invoking Green's Theorem are satisfied.

