Homework #6 • MATH 322 • Theorems on Contour Integration

- submit your write-up into your Section's box by noon, Friday 20 October.
- please acknowledge collaborations & assistance from colleagues.
- C) Contour Integrals (2 pages max, 10pts, from last week) Problems #3 and #4 (page 129).
- **D)** Integration & Antiderivatives (3 pages, 15pts) Before embarking on this problem, read carefully the discussion for Example 4 from Section 43.

Consider instead the complex contour integral

$$\int_C z^{1/3} \, dz$$

where the contour C is either C_1 or C_2 of Figure 53, and carry out the following steps:

- i) Give a branch definition for $f_1(z) = z^{1/3}$ for which $f_1(-3) = -\sqrt[3]{3}$ over a domain that includes z = 3 and a contour C_1 (from z = -3 to 3).
- ii) What is the value of $f_1(3)$?
- iii) What is the value of the contour integral following C_1 ?
- iv) Give a branch definition for $f_2(z) = z^{1/3}$ for which $f_2(-3) = -\sqrt[3]{3}$ over a domain that includes z = 3 and a contour C_2 (from z = -3 to 3).
- **v)** What is the value of $f_2(3)$?
- vi) What is the value of the contour integral following C_2 ?
- vii) Explain clearly how the antiderivative formula is used to obtain the different results for the contours C_1 and C_2 .
- E) Square Root & Area (one separate for page each, 10pts) Problems #6 and #7 (page 156). In #7, be clear that all of the requirements for invoking Green's Theorem are satisfied.