- submit your write-up into your Section's box by noon, Friday 24 November.
- please include your SFU login name with your name on the assignment.
A) Removable Singularities (10 pts, 2 pages) Review example 1 of section 59 (Integ. \& Diff. of P. Ser.). Then construct a parallel argument for the analyticity of the function as defined by Problem $\# 5$ on page 213. Be clear about the regions of analyticity of all functions (and representations) involved in the argument.
B) Reciprocal Series (10 pts, 3 pages) The text suggests a synthetic division approach to series quotients in section 61. I prefer direct application of equation (4) on page 216 for calculating the reciprocal of a series $g(z)=1 / f(z)$ which begins from

$$
\sum_{n=0}^{\infty} b_{n} z^{n}=g(z)=\frac{1}{f(z)}=\left\{\sum_{n=0}^{\infty} a_{n} z^{n}\right\}^{-1}
$$

and then demands that

$$
\left\{\sum_{n=0}^{\infty} b_{n} z^{n}\right\}\left\{\sum_{n=0}^{\infty} a_{n} z^{n}\right\}=1
$$

The right-side of the above is a one-term series, and by uniqueness of series, we can equate coefficients after using equation (4) for the left-side. Since the a_{n}-coefficients are given, it turns out that the b_{n}-coefficients can be solved for sequentially (provided $a_{0} \neq 0$). Apply this idea to Problem \#3 on page 219.
(Corrected version.)
The above Laurent series gives a value for the integral

$$
\oint_{\mathcal{C}} \frac{1}{e^{z}-1} d z
$$

where \mathcal{C} is the unit circle around the origin (use the parametrization, $z=e^{i \theta}$). Deriving explicit expressions for the real and imag parts of the integrand gives two (rather intimidating) realvalued, definite integrals - which you now know how to evaluate! Could you have obtained either of these results using your pre-requisite knowledge from real-valued calculus?
C) Residues (15 pts, 3 pages) Problems \#2b, 2d and 3a on page 230. For the problems \#2b and 2 d , present two methods for obtaining the desired residues.
*) Other Problems (optional) Problems \# 7 and 10 on page 214. Problems \# 1 and 5 on page 230 .

