Homework \#0 • MATH 322 • Warm-up: Arithmetic of Complex Numbers

- read the Guideline for assignments as posted on the class webpage.
- please respect the page limit.
- submit your write-up into the math322 box by noon, Wednesday 12 September.
- remember that webct is an open forum for discussion.
- collaborations \& assistance from colleagues are permitted on assignments, but you must acknowledge help from others, including TAs, etc.
A) Student Info Form (on webct \& class webpage) Please fill out \& attach as the front page of your submitted assignment. If you have already submitted this form in class, you are welcome to fill out another version, or leave the grader a note asking to find yours in the stack.
B) Square Roots of a Complex Number (2 pages max, 10pts) Given a complex number $z=x+i y$, define a square root of z as any complex number w such that $w^{2}=z$. Find formulas for all of the square roots of $x+i y$. Begin by expressing w as $a+i b$ and carefully (explain why your arithmetic is valid) solve for the real values of $a(x, y)$ and $b(x, y)$ - how many distinct square roots did you expect \& how many are implied by your final formula? Check your answer by finding all of the square roots of $1-7 i$.
*) Extra Problems to Note (optional) For those who are concerned about their understanding of the basics of complex numbers, I consider the problems listed below as introductory material for this class. Please read through them, you may offer them up as a discussion the in first tutorial if you wish.
- \#5, 7; page 5
- \#1; page 8
- $\# 2,4,5$; page 12
- \#1, 2, 10; page 14-15
- \#1, 2, 5; page 22-23
*) Bombelli's (1526-73) Vision (optional challenge problem) Cardano's (1501-76) application of Tartaglia's (1500-77) formula for the solution of the cubic polynomial $x^{3}=15 x+4$ gave the odd-looking result

$$
x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}
$$

when in fact, it was known that there was a perfectly fine integer root. Invoking the rules of complex arithmetic, show that the above expression can indeed be a simple, real-valued root. (Hint: Bombelli had the insight to guess the complex-valued cube roots.)

