NAME & Places: (hometowns, etc) (4th year MATH/APMA, for example) Year & Programs: E-Mail (req) & Local Phone (opt): Quantitative Courses: (term taken & text) linear algebra & diff. equations adv. calculus & analysis courses with computing (sciences, engineering, economics, etc) other quant courses Matlab & Maple – Experience: (yes/no) Matlab & Maple – Access: (lab and/or home) Other Computing Experience: (software, programming languages, web design) Subjects of Interest: (specific areas of math, sciences, etc) rank in order of priority (1 = most, 3 = least)Mathematical Focus: analysis/theory [] applications [] computing & graphics Personal Course Objectives: goals for this class & future plans

Familiarity Scale: I know it
5in my sleep!
4 after a bit of thinking
3should I see it in class again
2 if I can wikipedia it
${f 1}$ vaguely from a previous exam question I couldn't answer
0 huh?
-7is a subject to be avoided at all costs
Mathematical Topics: use above scale
CALC: implicit (partial) differentiation
CALC: multi-variable chain rule & change of variables
CALC: multiple integrals
CALC: theorems of Green & Stokes
LIN ALG: solution methods for systems of linear equations
LIN ALG: existence & uniqueness of solutions for systems of linear equations
LIN ALG: matrix eigenvalues & eigenvectors
ODEs: solution methods for 2^{nd} -order linear ODEs
ODEs: using initial conditions for 2^{nd} -order linear ODEs
ODEs: solution of linear ODE systems
ODEs: eigenvalues & eigenfunctions
SERIES: deriving Fourier series
SERIES: solution of BVPs by Fourier series
COMPLEX: complex exponential notation
COMPLEX: complex contour integration
COMPLEX: Fourier transform integrals