- please respect page limits.
- submit your write-up Wednesday 25 May.
- remember that the webct discussion is an open forum.
- please annotate plots well.
- refer to *Guidelines for Reports*.
- A) Weierstrauss M-Test (3 pages max) The trigonometric series (C > 0, a real constant)

$$S(x) = \sum_{j=1}^{\infty} e^{-Cj} \sin jx$$
 (1)

appeared as an example Fourier series in the first lecture.

- Show that the Weierstrauss M-test can be applied to show the uniform convergence of the series. Clearly verify each of the premises required by the M-test.
- In fact, by a suitable choice for the Weierstrauss sequence $\{M_j\}$ you can give an explicit function $N(\epsilon)$ as used in the definition of uniform convergence.
- More generally, with a positive result for the M-test, concisely describe how one produces N(ε). (Note that a rigorous statement of the Weierstrauss M-test is attached. You are welcome to use another version as long as you attach a copy as an Appendix.)
- B) Dirichlet Test (3 pages max) Consider the complex exponential series

$$F(x) = \sum_{j=1}^{\infty} \frac{e^{ijx}}{j}$$
⁽²⁾

over the subinterval $I = [a, \pi - a]$ where a is a fixed positive real.

- Indicate why the Weierstrauss M-test cannot readily be applied to the uniform convergence of F(x) over $x \in I$.
- An alternative to the M-test, is the Dirichlet test (copy also attached). Apply this test to prove that F(x) converges uniformly on all closed subintervals of $[0, \pi]$ which do not contain the endpoints. (Summing a geometric series is useful here.) Again, carefully verify that the premises of the test are satisified.
- Plot the real and imaginary parts of the partial sums. Can you design a graphic which illustrates the uniform convergence and the possible non-uniform convergence of the series?
- C) Half Parabola (3 pages max) Produce the series for Exercises 1.4.3 and 1.4.4 of the text (no need to show the calculus, but explain your thinking and/or methods). Plot the errors between the original function and partial sums of the Fourier series, $f(x) F_N(x)$. Illustrate the near self-similarity of the errors (try contrasting N which are powers of two).

Note: two functions f(x) and g(x) are self-similar about x = 0 if there are constants a, b such that g(x) = af(bx).

9.3 DEFINITION OF UNIFORM CONVERGENCE

Let $\{f_n\}$ be a sequence of functions which converges pointwise on a set S to a limit function f. This means that for each point x in S and for each $\varepsilon > 0$, there exists an N (depending on both x and ε) such that

$$n > N$$
 implies $|f_n(x) - f(x)| < \varepsilon$.

If the same N works equally well for *every* point in S, the convergence is said to be *uniform* on S. That is, we have

Definition 9.1. A sequence of functions $\{f_n\}$ is said to converge uniformly to f on a set S if, for every $\varepsilon > 0$, there exists an N (depending only on ε) such that n > N implies

$$|f_n(x) - f(x)| < \varepsilon$$
, for every x in S.

We denote this symbolically by writing

$$f_n \rightarrow f$$
 uniformly on S.

When each term of the sequence $\{f_n\}$ is real-valued, there is a useful geometric interpretation of uniform convergence. The inequality $|f_n(x) - f(x)| < \varepsilon$ is then equivalent to the *two* inequalities

$$f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon.$$
(3)

If (3) is to hold for all n > N and for all x in S, this means that the entire graph of f_n (that is, the set $\{(x, y) : y = f_n(x), x \in S\}$) lies within a "band" of height 2ε situated symmetrically about the graph of f. (See Fig. 9.4.)

A sequence $\{f_n\}$ is said to be uniformly bounded on S if there exists a constant M > 0 such that $|f_n(x)| \le M$ for all x in S and all n. The number M is called a uniform bound for $\{f_n\}$. If each individual function is bounded and if $f_n \to f$ uniformly on S, then it is easy to prove that $\{f_n\}$ is uniformly bounded on S. (See Exercise 9.1.) This observation often enables us to conclude that a sequence is not uniformly convergent. For instance, a glance at Fig. 9.2 tells us at once that the sequence of Example 2 cannot converge uniformly on any subset containing a neighborhood of the origin. However, the convergence in this example *is* uniform on every compact subinterval not containing the origin.

9.6 UNIFORM CONVERGENCE OF INFINITE SERIES OF FUNCTIONS

Definition 9.4. Given a sequence $\{f_n\}$ of functions defined on a set S. For each x in S, let

$$s_n(x) = \sum_{k=1}^n f_k(x)$$
 (*n* = 1, 2, ...). (4)

If there exists a function f such that $s_n \to f$ uniformly on S, we say the series $\sum f_n(x)$ converges uniformly on S and we write

$$\sum_{n=1}^{\infty} f_n(x) = f(x) \quad (uniformly \ on \ S).$$

Theorem 9.5 (Cauchy condition for uniform convergence of series). The infinite series $\sum f_n(x)$ converges uniformly on S if, and only if, for every $\varepsilon > 0$ there is an N such that n > N implies

$$\left|\sum_{k=n+1}^{n+p} f_k(x)\right| < \varepsilon, \quad \text{for each } p = 1, 2, \ldots, \text{ and every } x \text{ in } S.$$

Proof. Define s_n by (4) and apply Theorem 9.3.

Theorem 9.6 (Weierstrass M-test). Let $\{M_n\}$ be a sequence of nonnegative numbers such that

$$0 \le |f_n(x)| \le M_n$$
, for $n = 1, 2, \dots$, and for every x in S.

Then $\sum f_n(x)$ converges uniformly on S if $\sum M_n$ converges.

Proof. Apply Theorems 8.11 and 9.5 in conjunction with the inequality

$$\sum_{k=n+1}^{n+p} f_k(x) \bigg| \le \sum_{k=n+1}^{n+p} M_k$$

Theorem 8.11 (Cauchy condition for series). The series $\sum a_n$ converges if, and only if, for every $\varepsilon > 0$ there exists an integer N such that n > N implies

 $|a_{n+1} + \cdots + a_{n+p}| < \varepsilon \quad \text{for each } p = 1, 2, \dots$ (2)

9.11 SUFFICIENT CONDITIONS FOR UNIFORM CONVERGENCE OF A SERIES

The importance of uniformly convergent series has been amply illustrated in some of the preceding theorems. Therefore it seems natural to seek some simple ways of testing a series for uniform convergence without resorting to the definition in each case. One such test, the *Weierstrass M-test*, was described in Theorem 9.6. There are other tests that may be useful when the *M*-test is not applicable. One of these is the analog of Theorem 8.28.

Theorem 9.15 (Dirichlet's test for uniform convergence). Let $F_n(x)$ denote the nth partial sum of the series $\sum f_n(x)$, where each f_n is a complex-valued function defined on a set S. Assume that $\{F_n\}$ is uniformly bounded on S. Let $\{g_n\}$ be a sequence of real-valued functions such that $g_{n+1}(x) \leq g_n(x)$ for each x in S and for every $n = 1, 2, \ldots$, and assume that $g_n \to 0$ uniformly on S. Then the series $\sum f_n(x)g_n(x)$ converges uniformly on S.

Proof. Let $s_n(x) = \sum_{k=1}^n f_k(x)g_k(x)$. By partial summation we have

$$s_n(x) = \sum_{k=1}^n F_k(x)(g_k(x) - g_{k+1}(x)) + g_{n+1}(x)F_n(x),$$

and hence if n > m, we can write

$$s_n(x) \stackrel{*}{-} s_m(x) = \sum_{k=m+1}^n F_k(x) (g_k(x) - g_{k+1}(x)) + g_{n+1}(x) F_n(x) - g_{m+1}(x) F_m(x).$$

Therefore, if M is a uniform bound for $\{F_n\}$, we have

$$\begin{aligned} |s_n(x) - s_m(x)| &\leq M \sum_{k=m+1}^n \left(g_k(x) - g_{k+1}(x) \right) + M g_{n+1}(x) + M g_{m+1}(x) \\ &= M \left(g_{m+1}(x) - g_{n+1}(x) \right) + M g_{n+1}(x) + M g_{m+1}(x) \\ &= 2M g_{m+1}(x). \end{aligned}$$

Since $g_n \to 0$ uniformly on S, this inequality (together with the Cauchy condition) implies that $\sum f_n(x)g_n(x)$ converges uniformly on S.