Homework \#3 • MATH $419 \bullet$ The Lemma of Riemann \& Lebesgue

- submit your write-up Wednesday 01 June.
A) Riemann-Lebesgue Lemma (3 pages max, 5 extra points based on quality of presentation.) Present a rigorous proof for a variant of the Riemann-Lebesgue lemma

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{a}^{b} f(x) \cos k(x-\alpha) d x=0 \tag{1}
\end{equation*}
$$

where $f(x)$ is a continuous function on $[a, b]$, and α is a given constant. Unlike the case in lecture, $f(x)$ is not necessarily periodic, but the proof requires only a minor modification. As a guide, your proof should include the following ideas:

- Break the interval into three pieces, two (quite) small, the other large. You may bound the contributions of each by $\epsilon / 2$.
- The continuity argument will apply to the larger subinterval. Use the rigorous definition of continuity in your integral bound.
- The existence of a lower bound for the index, $k>N(\epsilon)$, is thus detemined from the bounding of the large interval alone.

Discuss how this proof essentially extends the Riemann-Lebesgue lemma to all piecewise continuous (finite number of discontinuities) functions on $[A, B]$. (With a bit of Lebesgue's measure theory, this is further extended to continuous almost everywhere - but you needn't consider this.)
B) Decay (2 pages max) Consider the $f_{o}(x)$ in the example 1.13 in BN. Apply integration by parts once to identify the slowest-decaying, algebraic behaviour of the full-period Fourier coefficients. Make a comparison plot to see how much the slowest decaying part reflects the behaviour of the exact coefficients (which are provided in the text).

