Homework \#8 • MATH 419 • Last Homework

- submit your write-up on Thursday 28 July (my parents arrive on Friday).
A) A Bounded Linear Operator (4 pages) Consider the operator

$$
\begin{equation*}
K[f]=\int_{0}^{x}(x-y) f(y) d y \tag{1}
\end{equation*}
$$

where $f(x) \in L_{2}[0,1]$. Prove that $K \in B\left(L_{2}, L_{2}\right)$ with $\|K\|^{2} \leq 1 / 12$. You might first need to verify the identity

$$
\begin{equation*}
\left(\int_{0}^{x}(x-y) f(y) d y\right)^{2} \leq\left(\int_{0}^{x}(x-y)^{2} d y\right)\left(\int_{0}^{x}|f(y)|^{2} d y\right) \tag{2}
\end{equation*}
$$

- Use an induction argument to obtain the power operator formula

$$
\begin{equation*}
K^{n}[f]=\frac{1}{(2 n-1)!} \int_{0}^{x}(x-y)^{(2 n-1)} f(y) d y \tag{3}
\end{equation*}
$$

then apply this result to find a very pretty expression for the solution $f(x)$ to the integral equation

$$
\begin{equation*}
f(x)-\int_{0}^{x}(x-y) f(y) d y=g(x) \tag{4}
\end{equation*}
$$

given $g(x) \in L_{2}[0,1]$. (Pretty means no summation - one integration is inevitable.) Check your calculations by choosing any particular $g(x)$ and verifying that your general solution formula satisfies the integral equation.
bonus: The norm of $\|K\|$ can be evaluated by clear thinking \& some simple calculus.

