- write-ups are due Monday 29 March, $\mathbf{1 p m}$ (hard deadline for delivery to grader).
- presentation is a very important aspect of these final problems.
A) Pipe Poiseuille Flow (4 pages, 15pts) Use the steady Navier-Stokes equations to calculate gravity-driven flow through a pipe which is inclined at an angle α from the horizontal. I recommend using cylindrical coordinates with the \hat{z}-axis oriented with the pipe axis - hence, gravity will be seem to be tilted in the equations.

Show that in the above coordinate geometry, the gravitational vector \vec{g} points in the direction

$$
-\cos \alpha(\sin \theta \hat{r}+\cos \theta \hat{\theta})+\sin \alpha \hat{z}
$$

It is not surprising that the axial velocity is z-independent, but it turns out also to be θ-independent (like usual pipe Poiseuille flow). Thus $W(r)$ only. The pressure is also z independent, but develops a cross-sectional distribution.
Calculate the mass flux through the pipe. Plot the cross-sectional pressure distribution.
B) Spinning Sphere (5 pages, 20 pts) Solve the problem as posed by $\# 7.2$ in Acheson. Presentation counts for $3 / 4$ of the grade. Show that you understand both the mathematics and fluid dynamics of the problem.

